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A B S T R A C T

The power grid is a vital infrastructure in modern society, essential for ensuring public safety and welfare. As it
increasingly relies on digital technologies for its operation, it becomes more vulnerable to sophisticated cyber
threats. These threats, if successful, could disrupt the grid’s functionality, leading to severe consequences. To
mitigate these risks, it is crucial to develop effective protective measures, such as intrusion detection systems
and decision support systems, that can detect and respond to cyber attacks. Machine learning methods have
shown great promise in this area, but their effectiveness is often limited by the scarcity of high-quality data,
primarily due to confidentiality and access issues.

In response to this challenge, our work introduces an advanced simulation environment that replicates the
power grid’s infrastructure and communication behavior. This environment enables the simulation of complex,
multi-stage cyber attacks and defensive mechanisms, using attack trees to map the attacker’s steps and a
game-theoretic approach to model the defender’s response strategies. The primary goal of this simulation
framework is to generate a diverse range of realistic attack data that can be used to train machine learning
algorithms for detecting and mitigating cyber attacks. Additionally, the environment supports the evaluation of
new security technologies, including advanced decision support systems, by providing a controlled and flexible
testing platform.

Our simulation environment is designed to be modular and scalable, supporting the integration of new use
cases and attack scenarios without relying heavily on external components. It enables the entire process of
scenario generation, data modeling, data point mapping, and power flow simulation, along with the depiction
of communication traffic, in a coherent process chain. This ensures that all relevant data needed for cyber
security investigations, including the interactions between attacker and defender, are captured under consistent
conditions and constraints.

The simulation environment also includes a detailed modeling of communication protocols and grid
operation management, providing insights into how attacks propagate through the network. The generated
data are validated through laboratory tests, ensuring that the simulation reflects real-world conditions. These
datasets are used to train machine learning models for intrusion detection and evaluate their performance,
specifically focusing on how well they can detect complex attack patterns in power grid operations.
1. Introduction

The rapid modernization of distribution grid infrastructures, driven
by renewable energy integration and increased Information and Com-
munication Technologies (ICT) reliance, introduces new operational

∗ Corresponding author.
E-mail addresses: oemer.sen@fit.fraunhofer.de, o.sen@iaew.rwth-aachen.de (Ö. Sen), bozhidar.ivanov@rwth-aachen.de (B. Ivanov),

christian.kloos@rwth-aachen.de (C. Kloos), christoph.zoell@rwth-aachen.de (C. Zöll), p.lutat@iaew.rwth-aachen.de (P. Lutat), henze@spice.rwth-aachen.de
(M. Henze), andreas.ulbig@fit.fraunhofer.de, a.ulbig@iaew.rwth-aachen.de (A. Ulbig), michael.andres@fit.fraunhofer.de (M. Andres).

complexities and heightens cyber security vulnerabilities, emphasizing
the need for robust management and security frameworks [1,2].

The cyber attack on the Ukrainian regional distribution grid serves
as an example of the potential disruption caused by such attacks [3].
With the increasing size and complexity of power grids, as well as the
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growing dependence on digitalization and renewable energy sources,
securing cyber security is essential to ensure the reliable functioning of
ower systems [4].

IDSs are actively developed to enhance the protection of critical in-
frastructure by observing and scrutinizing network or system behavior
o identify potential cyber threats [5,6]. Also, DSS enhance incident

response capabilities by employing advanced techniques such as ADT
and optimization algorithms, crucial for identifying and countering
emerging cyber threats effectively [7,8]. Detecting and preventing
planned attacks on the power system requires the implementation of
effective countermeasures, and ML algorithms are being developed
for this purpose [9]. However, the lack of data required to train
hese algorithms can limit the predictability power of these algorithms,
ecessitating the generation of synthetic attack data that captures the

characteristics of real attacks.
Research on artificial data generation for cyber incidents in criti-

cal infrastructure, such as power grids, uses computer simulations to
replicate energy and communication systems, enabling realistic attack
scenario modeling. These simulations often require specialized models
o account for the unique characteristics of smart grid communica-
ion protocols and use co-simulations to capture detailed behaviors of
CT-based appliances and their associated attack vectors.

For instance, one approach focused on using serious games to simu-
late attack-defense scenarios, providing valuable insights into strategic
decision-making. However, this method lacked flexibility in generating
real-time scenarios and adapting to evolving threats [10]. Another
game-theoretic approach employed for wireless sensor networks offered
an optimized defense mechanism against malware propagation but did
not adequately represent dynamic attacker behavior in larger, more
complex smart grid environments [11]. Additionally, a tri-level game-
heoretic model for smart grids analyzed interactions at the power

plant, transmission, and distribution levels but simplified these inter-
actions, limiting its ability to handle real-time adaptability and scala-
bility [12]. Similarly, another work introduced a multi-stage simulation
sing game theory to optimize the defense of power systems, although

it faced challenges in scaling the framework to larger systems [13].
Simulation frameworks and co-simulation environments have also

ontributed significantly to the field. One such framework integrated
ed and blue team agents to automate cyber attack and defense simula-
ions but struggled with scalability and real-time adaptability in rapidly
volving threat landscapes [14]. A co-simulation framework combining
ower grid and communication simulators allowed for more detailed
nalyses but encountered limitations when scaling to larger, real-world
rid scenarios and incorporating diverse attack types [15]. Another

work analyzed structural vulnerabilities in spatial Cyber-Physical Sys-
em (CPS), providing a foundational approach for cascading failure
imulations. However, it lacked real-time capabilities and failed to
imulate the more complex cyber physical interactions critical to smart

grid security [16]. Furthermore, the tri-level game-theoretic simulation
introduced in another study provided insights into strategic resource
allocation but was constrained by assumptions of complete informa-
ion and struggled to model dynamic, real-time behaviors in larger
ystems [13].

In terms of reviewing the current research landscape, one work
rovided a comprehensive analysis of existing simulation, modeling,
nd analysis methods for power systems, revealing the limitations
f existing frameworks. These include a lack of scalability, limited

real-time adaptability, and insufficient integration of complex cyber
physical interactions within smart grids [17]. This review highlights
he need for more advanced simulation environments that can better
andle dynamic cyber physical interactions, real-time adaptation to
volving threats, and scalability to larger, interconnected grid systems.

Across these contributions, we identify several research gaps. First,
scalability remains a significant challenge, as many of the proposed
frameworks struggle to simulate larger, interconnected smart grid sys-
tems that mirror real-world complexity. Another key issue is real-time
2 
adaptability, with most models lacking the ability to dynamically adjust
strategies for both attack and defense as threats evolve. Furthermore,
many of the models do not fully capture the dynamic interactions
between the cyber and physical components of smart grids, a crucial
aspect of these systems. Lastly, most existing frameworks offer lim-
ited flexibility in simulating complex, multi-stage attack scenarios and
diverse cyber attack vectors, which hinders their ability to provide
realistic training data for ML-based IDS.

This work aims to address these gaps by developing a sophisti-
cated multi-stage attack-defense simulation framework. This frame-
work leverages co-simulation techniques to integrate both the power
rid and its communication systems while incorporating game-theoretic
rinciples to model dynamic, real-time strategies. By generating syn-
hetic attack data specifically for ML-based IDS, the work seeks to

enhance the robustness of smart grid cyber security. Additionally,
this framework includes multi-stage, dynamic attack models capable
of adapting in real-time, thereby filling the gaps in scalability, real-
time adaptability, and diversity of attack scenarios identified in prior
research.

Fig. 1 illustrates the attack and defense simulation methodology for
smart grids integrating a co-simulation environment that models both
the physical power flows and communication protocols (IEC 60870-5-
104 over TCP/IP), enabling realistic simulations of cyber attacks such
as FDI and Denial of Service (DoS) attacks. A game-theoretic approach
ynamically models the interaction between attackers and defenders,
ptimizing defense strategies based on critical node identification and

resource allocation. ML-based IDS are placed strategically and trained
with synthetic data generated from the simulations, while a DSS au-
tomates real-time incident response based on IDS alerts. Intermediate
validation through lab tests ensures the accuracy of the simulations,
particularly for communication protocols and multi-stage attack se-
quences, enhancing the system’s resilience to evolving cyber threats.
This research integrates a holistic simulation framework for smart grids,
covering both physical power flows and communication layers using
co-simulation techniques and standard protocols. The novel closed-loop
environment allows for seamless simulation of grid operations under
both normal and attack scenarios, ensuring no reliance on external
components. Validation is conducted through lab-based experiments,
enhancing the accuracy of the results and supporting the develop-
ment of machine learning-based IDS and Decision Support Systems for
improved smart grid resilience.

With this approach, we aim to advance the field of cyber security in
smart grids by developing a sophisticated simulation environment and
model. This environment is designed to generate synthetic data for ML-
ased IDS and DSS, reflecting the complex dynamics between attackers
nd defenders. Our key contributions are:

(1) Comprehensive analysis of existing literature and identification
of gaps in the current research landscape. Our work delves into
benchmarking, data synthesis, and simulation environments,
leading to a detailed problem analysis relevant to cyber security
in power grids (Sections 2 and 3).

(2) Development of an innovative model for generating synthetic
cyber attack data, tailored for ML-based IDS applications, en-
hancing the robustness of power grid cyber security (Section 6).
In particular, introduction of a novel method incorporating at-
tack tree modeling combined with game theory mechanics. This
approach is designed to yield diverse and realistic attack data
sets, crucial for training advanced ML algorithms (Section 7).

(3) Verification and validation of the proposed approaches through
laboratory tests and simulation studies. This step ensures the
accuracy and reliability of our model and methods in real-world
scenarios (Sections 8 and 9).

(4) Rigorous evaluation and investigation of different ML models
using the synthetic data generated. This includes a thorough
examination of the impact of attacker-defender dynamics on
detection quality and attack complexity (Sections 10 and 11).
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Fig. 1. The diagram illustrates the structured methodology of attack and defense simulation for smart grids, highlighting co-simulation, game-theoretic strategies, machine learning-

based IDS, and decision support systems, with validation through lab tests.
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A preliminary version of this paper appears in the proceedings of
he 2023 International Conference on Smart Energy Systems and Tech-

nologies (SEST) [18]. We have expanded and enhanced our previous
work in several significant ways:

(1) We have introduced a dedicated section for reviewing rele-
vant literature and a discussion of related work in Section 3.
This section now offers a more comprehensive and extensive
overview of the research landscape in benchmarking, data syn-
thesis, and simulation environments, culminating in a detailed
problem analysis.

(2) A formal description of the underlying simulation environment,
which replicates the smart grid along with its communication
behavior, has been added in Section 5, while providing a com-
prehensive overview of the developed framework in Section 4.

(3) More detailed insights into our methodology for simulating
multi-stage cyber attacks are provided, particularly focusing
on the phases of Information Technology (IT) propagation and
FDI attack coordination. This includes specific details regarding
attack modeling and implementation, as discussed in Section 6.

(4) The presentation of our evaluation results has been extended
to demonstrate the efficacy of the generated data in training
ML-based IDS. This includes various experiments to validate the
simulation environment through laboratory tests (Section 8),
to examine attack propagation behavior (Section 9), and to
showcase additional use cases such as the demonstration of DSS
(Section 11).

(5) Furthermore, this significantly extended paper now includes
more comprehensive details across all aspects of the design,
implementation, and evaluation of the simulation environment.

The structure of this paper is organized as follows: Section 2 in-
troduction into the relevant foundations, while Section 3 discusses
the research landscape pertinent to this study. Section 4 presents the
simulation environment, and Section 5 delves into the details of the
grid simulation. Our cyber security simulation is described in Section 6,
whereas Section 7 elaborates on the methodology used for generating
ynthetic attack data. Section 8 details the verification of the simulation
nvironment through laboratory tests. The attack simulation is exam-
ned in Section 9, followed by the evaluation of the generated data and
3 
the ML models for IDS in Section 10 and for DSS in Section 11. The
paper concludes with a discussion of the results in Section 12.

2. Background

This section delves into the key components and challenges associ-
ated with the operation and control of power grids, emphasizing the
ignificance of cyber security in this evolving landscape.

2.1. Power grid control structure

The operation and control structure of power grids, similarly to
Industrial Control System (ICS) [19], involves different layers of tech-
nology, each playing a vital role in ensuring efficient, secure, and
reliable electricity distribution. The electrical energy power grids are
often structured into multiple voltage levels, interconnected through
three-phase transformers [20], i.e. transmission and distribution grids.

he grid is a composite of primary and secondary technologies, with the
rimary technology encompassing components directly involved in the
eneration, transformation, and transport of electrical energy [21]. The

secondary technology complements this by monitoring, controlling, and
protecting these components.

Remote control technology, essential for communication between
control systems and secondary technology, employs Remote Terminal
Units (RTUs) to collect and relay information such as measurements
and control commands over Wide Area Network (WAN) [22]. These

TUs form the critical link between control and process levels, man-
ging monitoring and control data. SCADA systems, integral to grid
ontrol technology, are deployed as monitoring and control systems
ithin electrical power and pipeline grids. These systems are respon-

ible for centralized data collection and visualization. The hierarchical
tructure of grid control stations, essential for grid operation, differ-
ntiates by their functional scope and responsibility areas [23]. These

stations are categorized into grid, station, and field control levels, with
higher-level control stations overseeing the lower levels remotely.

In addition to these systems, higher-level decision and optimization
unctions are implemented in grid control stations, handling tasks such
s power flow calculation, grid condition detection, and grid security

assessment [24]. For effective operation management, power grid op-
erators undertake responsibilities such as grid monitoring and control,
disturbance detection and resolution, and executing switching plans for
maintenance [25]. To achieve these tasks, operators use tools such as
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power flow calculation and Optimal Power Flow (OPF), along with grid
condition detection techniques.

The Purdue Model, a key component of the Purdue Enterprise
Reference Architecture (PERA) [26], serves as a vital framework for
understanding the various layers and components of ICS networks,
and consequently for the SCADA systems in power grids. This model
delineates the ICS architecture into two primary zones: the Opera-
tional Technology (OT) zone, consisting of physical equipment and
operational process control systems, and the IT zone, which includes
systems for data management and communication. Additionally, a De-
militarized Zone (DMZ) is established between the IT and OT zones to
regulate access. The model divides the ICS architecture into six distinct
levels: At the base, Level 0 contains the physical hardware such as
transformers and circuit-breakers. Level 1 incorporates controllers such
as Intelligent Electronic Devices (IEDs) and RTUs that manage the Level
0 devices and bridge the layer with the overlaying layers. Ascending to
Level 2, we find the supervisory systems, including Human–Machine-
Interface (HMI) and SCADA software, which oversee ICS operations.
Level 3 is dedicated to managing production workflows, while Level
4 extends to systems handling logistics and data storage. The top tier,
Level 5, encompasses the enterprise network, integrating ICS data for
strategic business decision-making.

Focusing on the communication aspect, the primary facilities link
o the OT network via IEDs which handles control and measurement
perations, consolidating them via Modbus [27] at the level of RTUs.

This data is transmitted to the SCADA system over the OT network,
employing relevant OT protocols such as IEC 60870-5-104 [28]. In this
etwork, the Master Terminal Unit (MTU), functioning as the RTU’s
ounterpart, serves as a conduit to the SCADA system.

2.2. Cybersecurity in power grids

Cybersecurity in power grids plays a pivotal role in securing elec-
trical power systems against cyber threats. The contemporary power
grid, a complex interplay of generation, transmission, and distribution
networks, has grown increasingly dependent on digital technologies for
communication and control. This shift towards digitalization, although
beneficial for operational efficiency, introduces vulnerabilities to cyber
hreats, impacting the grid’s security and reliability.

The grid’s interconnected components, including generators, substa-
tions, transformers, and consumer interfaces, feature cyber components
such as control software and automated management systems. These
components are prone to cyber attacks such as malware, which can
interrupt power supply, inflict physical damage, or lead to severe fail-
ures. The utilization of SCADA systems in grid monitoring and control,
traditionally focused more on efficiency than security, are especially
vulnerable to cyber attacks through exposed interfaces [2,29]. Addi-
tionally, the essential grid components such as distributed control sys-
tems and IEDs constitute significant potential attack vectors. Incidents,
including the 2016 Ukrainian power grid attack [3], underscore these
ulnerabilities’ real-world consequences, such as widespread blackouts

and disruption of vital services. Other forms of attacks include DoS
attacks, which can overload communication networks, and FDI that
manipulate data, leading to erroneous operational decisions [30,31].

In Europe’s energy sector, the IEC 60870-5-104 protocol is prevalent
for managing widely dispersed processes [32]. As a legacy protocol,
IEC 60870-5-104 lacks crucial security features such as encryption
and authentication, making critical traffic vulnerable to interception
by unauthorized entities [33]. Attackers can exploit this vulnerability
through Man-in-the-Middle (MITM) attacks or by establishing unautho-
ized connections to manipulate traffic [34]. The IEC 62351 standard
ntroduces new security requirements such as secure end-to-end com-
unication using TLS [35], offering key exchange, encryption, and

authentication [36]. However, implementing these standards in tradi-
tional networks faces challenges due to resource-constrained devices,
potentially impacting service availability and real-time performance
4 
requirements [37,38]. Despite these advancements, power grids often
have assets with limited performance capabilities and long depreci-
tion periods, necessitating solutions that are compliant with legacy
ystems [39].

To combat these threats, various strategies are employed, ranging
from IDSs to robust network architecture designs that segment the
grid’s communication networks, enhancing resilience against cyber
attacks [40,41]. Furthermore, ongoing research in artificial intelli-
gence and ML presents new opportunities for predictive cyber secu-
ity measures, potentially identifying and mitigating threats before
hey materialize. IDS serve as a passive security mechanism, detecting

potential attack indicators without actively interfering with network
operations [42,43].

2.3. Intrusion detection systems

An IDS is an easily retroffitable security solution, designed to mon-
itor and analyze network or system activities to detect potential cyber
threats such as unauthorized access, misuse, or disruption [2,6]. IDSs
can be implemented in various forms, including on individual devices
or across a network, and they are capable of monitoring a wide range
of data types, including device logs, network traffic, and process data,
to identify suspicious or malicious activities.

IDSs are often categorized based on the source of their data into
network-based and host-based systems. Host-based IDSs operate di-
ectly on devices, scanning for malicious behavior such as file modifi-
ations [44], while network-based IDSs analyze network traffic, such as

packets or flow-data, to detect malicious activities [45]. This distinction
s particularly relevant in ICS environments, such as power grids, where
etwork-based IDSs for OT are critical. These systems can recognize and
nalyze process data, including measurements or control commands,
nd detect anomalies at the process level.

ML-based IDSs employ sophisticated methods for detecting anoma-
ies [9]. Two primary approaches used are allowlisting and blocklisting.

Allowlisting focuses on identifying deviations from normal system be-
havior learned by the model, whereas blocklisting identifies known
abnormal behaviors represented in the trained model. In both ap-
proaches, anomalies may indicate cyber attacks, system malfunctions,
or misconfigurations, manifesting as protocol errors, missing messages,
communication aborts, and more. These methods leverage network
structure, system discovery, and connection behavior to validate the
legitimacy of devices, protocols, and communication patterns.

Evaluation metrics for IDSs are application-specific, with high de-
tection accuracy, runtime efficiency, and explainability being key cri-
teria [46]. The robustness of IDSs is essential for improved detection
ccuracy, and the diversity in ensemble methods is a critical aspect to
e assessed [47,48]. The evaluation typically involves utilizing multi-

ple datasets [49], incorporating statistical tests and confidence inter-
als to ensure reproducibility, and controlling randomization in model
valuations.

3. Related work

This section reviews relevant literature and studies in the field
f cybersecurity for smart grids, highlighting their key advances and

identifying areas for further research.

3.1. Benchmarking

The research landscape has been actively exploring the development
f benchmark environments to evaluate the performance of various
L algorithms in detecting anomalies and intrusions within ICS. Ap-

proaches such as the Penn ML Benchmark [50] and the Scientific ML
Benchmark suite [51] provide vital resources for testing and com-
paring algorithm performance. Researchers have also emphasized the
creation of datasets from real ICS environments, such as the Cyber-kit
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datasets [52] and the Numenta anomaly benchmark [53], to evaluate
nsupervised anomaly detection techniques or IDSs in ICS. Specific
ocus has been given to datasets related to power grids to assess
he performance of ML algorithms in detecting anomalies in these
ystems [54–56]. However, there exists a need for more specialized

and comprehensive approaches, particularly in considering the unique
characteristics and constraints of ICS and power grids [57,58].

In addition, research works have investigated IDSs in ICS, focusing
on evaluating the criticality of ICS devices and identifying potential
adversary traces [59,60]. Advanced approaches include the replica-
tion of program states in digital twins [61], cyber attack classifica-
tion [62], and modeling ICS/SCADA communication using probabilistic
automata [63,64]. Anomaly detection methods for IEC 60870-5-104
have also been explored using multivariate access control and outlier
detection approaches [65–67]. However, these proposed approaches
equire additional analytical resources for their functionality, such

as infrastructure specifications, attack target understanding, statistical
data, or technical specifications [68–70].

3.2. Dataset generation

A wide range of approaches has been explored for generating syn-
hetic cyber attack data for power grids, including the creation of lab

environments such as the CICIDS2017 dataset [71], the development
f the ID2T framework for reproducible datasets [72], modification of

existing datasets such as UNSW-NB15 using denoising autoencoders
and Wasserstein Generative Adversarial Networks (GANs) [73], and
he generation of artificial attack data for power grid security using
rameworks such as Melody [74]. Furthermore, studies such as [75]
emonstrate the potential of data-driven deep reinforcement learning
or proactive cyber defense, while [76] introduces a cross-layered

framework for securing the power grid.
Generating comprehensive and realistic datasets for effective ML

odel training is challenging due to various factors such as infras-
ructure implementation, scenario development, and ensuring data in-
egrity and privacy [77]. Publicly available datasets may be limited [46,

78] as well as sharing real-world data publicly can increase the risk of
yber attacks, highlighting the need for more artificial datasets.

3.3. Simulation environment

Simulation environments are crucial for advancing cyber security
in power grids, allowing for the safe testing and refinement of cyber
ecurity strategies. These environments have evolved to cater to diverse
yber security scenarios in the power grid sector.

Co-simulation platforms have become increasingly significant, in-
egrating both the cyber and physical aspects of power grids. These
latforms are categorized into hardware-based and software-based sim-

ulations. Hardware-based simulations, such as those using real-time
platforms such as OPAL-RT [79], RTDS [80], and Typhoon-HiL [81],
offer high-fidelity modeling essential for real-time response analysis.
These platforms are crucial for scenarios where interaction between
physical hardware components and simulated systems is needed. In
contrast, software-based co-simulation platforms utilize tools such as
mosaik [82], OMNeT++ [83], and ns-3 [84] to provide flexible and
calable environments. These platforms are adept at modeling complex

network interactions and cyber security protocols in a purely virtual
setup, making them versatile for various research contexts.

The development of a power grid application platform exempli-
ies the effectiveness of these advanced co-simulation environments
n analyzing the interplay between power systems and ICT [85]. Net-

work and power grid co-simulation frameworks provide valuable in-
sights into grid vulnerabilities and cyber security readiness, enhancing
our understanding of wide-area monitoring networks [86]. Platforms
such as DSSnet, which combine electrical power distribution system
simulation with software-defined networking emulation, are examples
 t

5 
of software-based simulations demonstrating potential in power grid
lanning and evaluation [87]. In contrast, hardware-based platforms

facilitate transient state simulations that provide detailed insights into
the dynamic behavior of power grids under cyber attack scenarios,
crucial for developing effective mitigation strategies against evolv-
ing cyber threats [88]. Testbeds such as PowerCyber, representing
hardware-based simulations, provide realistic environments for test-
ing and validating security solutions and are invaluable for practical,
hands-on cyber security research [89].

The integration of power and communication network simulations
for power grid applications [90] highlights the significance of combin-
ing both power approaches in cybersecurity research.

3.4. Problem statement

The necessity for an abstract simulation environment dedicated to
cyber security research in power grids, particularly for exploring de-
fense mechanisms such as ML-based IDSs and DSSs, is evident from the
xisting gaps in co-simulation approaches. Current models, while capa-

ble of cross-domain research, often fall short in focusing specifically on
cyber security.

This shortcoming underscores the importance of a simulation envi-
onment that can accurately mimic real-world cyber attacks, a critical

factor for testing and enhancing defense systems. Such an environ-
ment is paramount for generating comprehensive and realistic datasets
ssential for training ML algorithms in detecting cyber threats. The rich-
ess and diversity of these datasets directly influence the effectiveness
f ML-based security solutions. Additionally, DSSs, reliant on accu-
ate and extensive data, would benefit significantly from a simulation
nvironment that replicates real-world scenarios with precision.

One of the critical challenges faced by existing approaches is their
imitations in terms of scalability and flexibility. An advanced sim-
lation environment needs to overcome these hurdles, allowing re-
earchers to expand the complexity of simulations and alter scenarios
s necessary, which is vital for in-depth cyber security research.

Moreover, reducing the dependency on expensive, proprietary hard-
ware is also crucial. By leveraging advanced software-based simula-
tions, such an environment could make cyber security research more
ccessible and practical. Furthermore, a comprehensive cross-domain
nalysis is essential. The simulation environment should consider both
he communication and power aspects of power grids to understand
he interdependencies thoroughly and develop robust cyber security
trategies.

4. Overview

Fig. 2 provides a comprehensive overview of the developed frame-
work for understanding and simulating dynamic interactions between
the cyber and physical planes within a power grid. It focuses on com-
munication processes, operational strategies, cyber attack simulations,
and the intrinsic functions of the power grid.

At the core of the model is the Communication Model, which
handles crucial tasks such as dynamic IP/MAC address allocation,
pathfinding with Dijkstra’s algorithm [91], and adjustments in real-
time network settings. This model integrates with various network
layers, including the Data Link Layer that manages MAC address tables
and frame handling for network data forwarding; the Network Layer
which handles IP routing and packet forwarding; the Transport Layer
focuses on flow control, error handling, and data packet segmenta-
tion/reassembly; and the Application Layer that deals with process
data, datapoint, and operational technology protocols.

The model also includes Grid Operation Management for ensuring
fficient and reliable grid performance, covering decision-making pro-
esses, state estimation, and verification. A Game-Theoretic Attack &
efense Strategy is represented, highlighting the complex interplay be-

ween attackers and defenders, with a focus on continuous learning and
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Fig. 2. Comprehensive overview of the integrated power grid communication and simulation model. This figure illustrates the multi-layered approach to power grid simulation,
ncompassing communication layers, operational strategies, cyber security simulations, and energy grid technologies.
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strategic adaptation. Additionally, the Cyber Attack Simulation models
realistic multi-staged attack strategies, examining network vulnerabil-
ities and resilience, while the FDI Simulation focuses on cyber threat
modeling, sensor data manipulation, and attack vector generation.

Key elements of the framework also encompass Secondary Tech-
nology, which includes command processing, monitoring, and data
analysis critical in controlling grid operations; Primary Technology in-
volving generation, distribution, and consumption within the grid; and
he Power Grid Simulation, which adds time-series profiles, steady-state

power flow computation, and a detailed distribution grid model.
The framework features a network of interconnections, indicating

he flow of information and command across various components.
he Communication Model integrates with all network layers for data
xchange, and it is utilized by both the cyber attack Simulation and
DI Simulation for simulating attacks. Grid Operation Management
nd the Game-Theoretic Attack & Defense Strategy exchange data via
he Communication Model. The Secondary Technology controls and
onitors the Primary Technology and also exchanges data via the

Communication Model. The Primary Technology interacts with the
ower Grid Simulation for grid data exchange.

5. Power grid simulation

The Power Grid and Communication Simulation presents a novel,
fully integrated approach that encapsulates the entire chain of power
grid operation within a unified environment. This system models every
stage, from data modeling, scenario generation, power flow simulation,
o datapoint mapping and communication exchange, without relying
n external devices or components, ensuring complete independence
nd internal consistency. The environment incorporates layer-based
imulation grounded in the SGAM framework [92], enabling the sim-

ulation of grid operation across physical (Energy Technology), com-
munication (Information Technology), and operational (Operational
Technology) layers, using PandaPower for power flow modeling and
IEC 60870-5-104 over TCP/IP for communication.

What sets this system apart is its ability to simulate both the
hysical behavior of the grid and its communication dynamics within
6 
the same environment. The power flow simulation ensures accurate,
eal-time modeling of electrical grid operations in steady state, while
he communication simulation mirrors real-world network conditions,
andling protocols such as Ethernet, IP, and TCP. The communication
ayers, including RTUs, IED, and switches, interact seamlessly with the
hysical grid, reflecting the data exchanges critical for grid operation.
his cohesive simulation environment provides a comprehensive view
f the smart grid’s performance under normal conditions, ensuring ac-
urate data flow and network management, all within one independent,
losed-loop system.

In the following, we outline the methodology and approach within
our paper used in the grid modeling and communication simulation.

5.1. Grid modeling

This section delves into the concepts of layer-based simulation envi-
onments and their significance in the overall grid simulation process.
he foundation of this approach is grounded in our previous work on

SGAM-based graph modeling [92] and is completely implemented in
Python.

5.1.0.1. Concept of layer-based simulation environment. The simulation
environment’s foundation is the SGAM [93], which systematically de-
constructs the smart grid, allowing for the classification of system
actors according to SGAM’s three dimensions: Interoperability, Zones,
nd Domains. In this model, interoperability layers are categorized into

Electrical Energy Technology (ET), IT, and OT domains (cf. Fig. 3):

• ET: This encompasses the components and process levels, also
known as Primary Technology.

• IT: Represents the communication level, akin to Secondary Tech-
nology.

• OT: Involves the information and function levels.

In SGAM-based models, an attacker’s influence spans across these
domain-level layers, compromising devices in the IT layer and manip-
ulating the OT layer to attack the ET layer. The goal is to ensure that
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Fig. 3. An exemplary illustration of the hierarchically object-orientated SGAM-based modeling concept for grid simulation.
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traces of attack propagation and execution are left across all levels of
the interoperability axis.

The simulation environment must incorporate actors capable of
creating, processing, and exchanging information. These actors should
be classified into different domains and zones, reflecting the hierar-
chical organization of the system. Additionally, the introduction of an
ICT layer is essential to accurately simulate the WAN, ensuring that
communication dynamics are realistically represented.

5.1.0.2. Interoperability between layers. The environment uses a hier-
archical communication structure, segregating the energy grid into
distinct layers: Operation, WAN, Station, Field, and Process. Each layer
has its unique set of components and communication requirements,
influencing the modeling approach.

The WAN, bridging the Operation and Station layers, is character-
zed by a mix of wireless and wired communication networks. This
uality necessitates a flexible modeling approach, accommodating the

varying speeds, capacities, and reliability factors inherent in these
communication modes. The Distribution System operator (DSO)’s in-
teraction with both wireless and wired networks and the Virtual Power
Plant (VPP)’s reliance on wireless communication, highlight the need
or diverse communication protocols and robust network simulations.

At the Station layer, RTUs at primary and secondary substations,
along with Distributed Energy Resources (DER), form crucial com-
munication nodes. These RTUs serve as intermediaries, bridging the
higher-level operational commands with the field-level implementa-
tions. Here, the communication network must efficiently model the
transmission of operational commands and feedback between these
ayers. The distinct nature of each RTU—whether it is part of a pri-

mary or secondary substation or integrated with DER—requires tailored
communication protocols and latency models.

The Field layer includes various protective and control devices such
as transformer protection IEDs, switchgear, and network analyzers.
These devices communicate primarily with the Station layer, specifi-
cally the RTUs, to execute and report operational processes. Modeling
this communication involves understanding the physical layout of the
grid and the logical flow of information, which may vary depending on
the device and its function within the grid.

At the base of the hierarchy lies the Process layer, encompassing
hysical grid elements such as transformers, circuit breakers, and dis-

connect switches. The communication here is more control-oriented,
 e

7 
focusing on the direct management of physical assets. This layer’s inter-
action with the Field layer devices dictates a need for precise, real-time
communication modeling to ensure grid stability and responsiveness to
operational changes.

This concept involves accurately modeling the inter-layer communi-
ations, from high-level operational decisions down to field-level device
ontrols. The communication network must simulate various technolo-
ies, from wireless networks to traditional wired systems, ensuring
omprehensive coverage of the grid’s diverse communication needs. By
oing so, the simulation can provide valuable insights into the grid’s
ehavior under normal and stressed conditions, including potential
yber attack scenarios.

5.1.0.3. Layer segregation. Our simulation environment leverages the
etworkX [94] library to construct a layered graph structure. It starts

at the process level, represented by a PandaPower [95] network. The
simulation uses a versatile PandaPower network to represent vari-
ous electrical grid models, customizable in nodes, voltage levels, and
substations for diverse analyses.

The hierarchical construction of the simulation environment begins
ith the generation of a NetworkX MultiGraph from the PandaPower
etwork, serving as the process layer. This base layer then supports the
onstruction of subsequent layers: The field layer, where IED instances

are assigned to nodes from the process layer; the station layer, grouping
IED nodes and associating them with corresponding RTU nodes; and the
WAN layer, where Switch class instances are created and meshed based
on the substation edges from the process layer.

The communication infrastructure’s WAN layer involves the integra-
tion of IT devices such as routers, switches, and firewalls. This layer
simulates ISO/OSI Layer 2 (L2) to ISO/OSI Layer 4 (L4) behaviors,
corresponding to Ethernet, IP, and TCP protocols, respectively. Func-
tionalities include routing and switching of TCP/IP packets between
the operation and station layers.

Routing tables for communicable devices are created based on
he shortest paths determined by the Dijkstra algorithm [91]. This

algorithm identifies the paths to various endpoints (RTU and MTU
instances) across the network, and these paths are stored as IP addresses
in the routing tables.

5.2. Communication simulation

Effective communication within the power grid is vital for its op-
rational integrity, especially in the face of cyber threats. This section
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describes the simulation of communication protocols and the dynamics
of data flow within the simulation environment.

5.2.0.1. Modeling of IT and OT devices in power grids. The simulation
environment integrates a polymorphic approach for device represen-
ation, leveraging a class hierarchy that differentiates devices based

on their operational layers and functionalities. The foundational class,
etwork Switches, is responsible for L2 functionalities, such as forward-

ing packets to their appropriate destinations using switching algorithms
and rulesets to manage network traffic efficiently.

Routers, which inherit from the Network Switches class, operate
t ISO/OSI Layer 3 (L3) by routing packets across different network
egments. They examine incoming packets’ IP addresses and determine
he best path for transmission, either using the ARP table or the

device’s own routing table. The RTU class, an extension of the Router
class, introduces the ability to process packets at the application layer,
encompassing command processing, monitoring data, and managing
communication for operational control.

Dynamic IP and MAC address allocation are managed by both
outer and Switch classes to facilitate efficient packet routing within

he network’s topology. The RTU class plays a crucial role in dynamic
ddress handling, assigning them based on network configuration and
perational needs. This contributes to the precise and effective routing
f packets in the network.

The environment uses algorithms such as Dijkstra’s for pathfind-
ng, ensuring data packets are transmitted through the most opti-
al routes based on current network conditions and the NetworkX
raph model’s topology. At L2, switches use MAC addresses for frame

orwarding and manage Source-Address-Tables autonomously, routing
ackets accurately within the network.

RTUs, within the application layer, are modeled to handle various
asks such as command processing, monitoring, and data analysis. As
ritical nodes, they facilitate the receiving and sending of control com-
ands and data, vital for the power grid’s operations. Their interactions
ith other network elements mirror realistic data exchange processes

n the grid.
The environment enables comprehensive modeling of command

transmissions and monitoring processes, integral for assessing the im-
pact of cyber attacks on power grids. These processes are implemented
using event-driven methods within the RTU class, reflecting the inter-
actions across different communication model layers. Moreover, the
environment is designed for real-time adaptability, adjusting routing
paths in response to changing network conditions such as congestion
or cyber attacks, thus providing insights into the power grid’s resilience
under various scenarios.

Network congestion simulations and subsequent data flow and rout-
ing adjustments are also effectively modeled. These include modi-
fying routing tables, employing backup paths, and utilizing conges-
tion control protocols, ensuring the network’s continuous and efficient
communication even under strained conditions.

The simulation employs key communication protocols such as Eth-
rnet for L2, IP for L3, TCP for L4, and IEC 60870-5-104 for ISO/OSI
ayer 7 (L7), modeled to mimic real-world network conditions, offering

a realistic testing and analysis environment.

5.2.0.2. Simulation of communication protocols. Within the simulation
environment, L2 to L4 are modeled according to the illustration in
Fig. 4 and Table 1. In the integrated simulation environment, Ethernet
witches are modeled to reflect their function in real-world networks.
his includes the management of MAC tables, essential for addressing

and directing data packets to the correct destination. The simulation
also contemplates the handling of frames and the concept of collision
omains, highlighting the switches’ role in controlling data flow within

L2 of the OSI model. This modeling approach is critical for studying the
impact of cyber attacks on power grids, providing a realistic framework

for network behavior analysis. t

8 
Table 1
Description of network layers and protocols.

Layer Reference Description

CSMA/CA/CD [96] Carrier Sense Multiple Access protocols
used for controlling media access in
network environments.

Ethernet IEEE8023 [97] A widely used technology in local area
networks that manages packet
transmission over different network
segments.

WLAN IEEE80211 [98] Wireless Local Area Network protocol,
enabling wireless connectivity in local
areas.

MAC IEEE8024 [99] Media Access Control, part of the data
link layer that manages protocol access
to the physical network medium.

ARP RFC826 [100] Address Resolution Protocol used for
mapping a network address (IP address)
to a physical address (MAC address).

IPv4 RFC791 [101] Internet Protocol version 4, used for
addressing and routing data across
networks.

ICMP RFC792 [102] Internet Control Message Protocol used
for error reporting and query messages
in network communication.

TCP RFC793 [103] Transmission Control Protocol, providing
reliable, ordered, and error-checked
delivery of data between applications.

UDP RFC768 [104] User Datagram Protocol, used for simple
transmission of datagrams without
acknowledgments or guaranteed
delivery.

The IP routing mechanism in the simulation is designed to showcase
both static and dynamic routing processes. Using the PandaPower
and NetworkX Graph models, the simulation dynamically generates
network participants based on predefined rules, encompassing both L2
and L3 devices. This approach allows for an elaborate examination of
IP routing tables’ management, providing insights into how packets are
directed across various network segments. The simulation’s focus on
routing mechanisms aids in comprehending how cyber attacks could
potentially disrupt network traffic in power grids.

The simulation extends to higher layers of the OSI model, L7, partic-
ularly focusing on application protocols (e.g. IEC 60870-5-104) vital for
power grid operations. This includes a thorough simulation of the data
exchange between the OT device classes and other network elements,
implemented through event-driven methods. The framework allows for
transparent processes and interfaces, enabling the simulation of cyber
attacks on lower protocol layers. By simulating different communica-
tion technologies and their specific vulnerabilities, the environment
rovides a comprehensive tool for analyzing the resilience of power
rids against cyber threats.

Furthermore, the simulation includes the implementation of UDP
ver the typical TCP protocol, reducing complexity and maintaining
ompatibility with the rest of the simulation environment. The L3
evices within the simulation are programmed to send and receive
ackets using generic methods that interact directly with the assigned
2 interface, demonstrating a detailed interplay between the various
ayers of network communication. This layered approach in the simu-
ation offers a multifaceted perspective on how different protocols and
ervices operate within a power grid infrastructure.

6. Cyber security simulation

Cybersecurity simulation is crucial for comprehending the vulnera-
bilities and threats within power grid operations. This section outlines
he methodologies for simulating grid operations and multi-staged
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Fig. 4. Overview of the communication model within the simulation environment. It successfully integrates various aspects of networking, from routing and switching to application

layer processes.
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cyber attacks, encompassing both FDI and OT-related attacks. The
ulti-stage attack represents the initial phase of the attacker, char-

acterized by the propagation and spreading of influence, whereas the
FDI constitutes the final stage, involving coordinated attacks and the
execution of technically adverse impacts on the grid [105]. Table 2
presents the nomenclature of the variables used in this work.

6.1. Grid operation simulation

The management of electric energy distribution through power grids
nvolves a complex array of operations, technologies, and method-

ologies to ensure efficient, reliable grid performance. These networks
typically comprise radial ring circuits operated in an open ring format
under normal conditions. Adhering to the (n-1) criteria, they maintain
grid security and reliability, allowing for temporary overloads up to
130% in case of operational disturbances:

|𝑉𝑖 − 𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙| ≤ 𝛥𝑉𝑚𝑎𝑥 (1)

𝐼𝑙 𝑖𝑛𝑒 ≤ 𝐼𝑚𝑎𝑥 (2)

where 𝑉 is the node voltage, 𝑉 is the nominal voltage, 𝛥𝑉 is
𝑖 𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑚𝑎𝑥

9 
the maximum allowable voltage deviation, 𝐼𝑙 𝑖𝑛𝑒 is the current in the
line, and 𝐼𝑚𝑎𝑥 is the maximum allowable current.

Operational management in grid systems demands continual mon-
itoring and adjustments of grid states to uphold operational intervals
such as voltage bands and thermal limits. This management is particu-
larly crucial during disturbances, where rapid response measures such
as topology changes, transformer tap adjustments, and reactive power
compensation are enacted. These include adapting grid configuration to
redistribute loads, modifying transformer voltage levels, and utilizing
connected compensation equipment for voltage regulation.

State Estimation (SE) is integral to grid operation management
[106], providing accurate grid state snapshots using real-time, pseudo,
nd virtual measurements. Here, �̂� is the estimated measurement vec-
or, 𝐻 is the Jacobian matrix, and 𝑥 is the state vector.

̂ = 𝐻 𝑥 (3)

While traditionally used in transmission grids, SE is increasingly ap-
plied in distribution grids due to power grid advancements. High-level
decision-making processes such as short circuit current computations,
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Table 2
Nomenclature.

Symbol Description

𝑊𝑖,𝑗 Weight of the edge connecting nodes 𝑖 and 𝑗
𝑡 Time needed for a particular step
𝐶𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟
𝑗 Outage costs for the component from the attacker’s viewpoint

𝑃 𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟
𝑗 Likelihood of successfully compromising a node

𝑅𝑖𝑠𝑘 Risk of grid operation disruption due to cyber attack
𝑄𝑖 Learning rate for each node 𝑖
𝑐𝐶 𝐵 (𝑣) Current flow betweenness centrality
𝜏𝑠𝑡(𝑣) Throughput from node 𝑠 to node 𝑡 via node 𝑣
𝑏𝑠𝑡(𝑣) Absolute value of the total amount of current that flows through 𝑣
𝑟( ⃗𝑒𝑖,𝑗 ) Resistance between nodes 𝑖 and 𝑗
𝑐𝑜𝑢𝑡𝑎𝑔 𝑒𝑖 , 𝑐𝑜𝑢𝑡𝑎𝑔 𝑒𝑗 Outage costs of nodes 𝑖 and 𝑗
𝑇 𝑇 𝐶(𝑠, 𝑊 ) Time to Compromise
𝑡1, 𝑡2 Time taken for the first and second stages of an attack
𝑃1 Probability of the first stage of an attack
𝑢 Unsuccessful rate of the second stage of an attack
𝑁 Total number of nodes
𝑉𝑖 Node voltage
𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙 Nominal voltage
𝛥𝑉𝑚𝑎𝑥 Maximum allowable voltage deviation
𝐼𝑙 𝑖𝑛𝑒 Current in the line
𝐼𝑚𝑎𝑥 Maximum allowable current
�̂� Estimated measurement vector
𝐻 Jacobian matrix
𝑥 State vector
𝑃 𝑚𝑖𝑛
𝑖 , 𝑃 𝑚𝑎𝑥

𝑖 Minimum and maximum active power outputs of generator 𝑖
𝑄𝑚𝑖𝑛

𝑖 , 𝑄𝑚𝑎𝑥
𝑖 Minimum and maximum reactive power outputs of generator 𝑖

𝑐 𝑖 Cost coefficient for generator 𝑖
𝑎 Attack vector
𝑐 Non-zero vector representing deviation from estimated normal state
�̂� True state
�̂�𝑎 Estimated state with manipulation
𝑟 Residual without manipulation
𝑟𝑎 Residual with manipulation
𝑃 Set of protected measurements
𝛼𝑖 Minimization criteria for the attack vector

grid SE, topology adjustments, and voltage-reactive power optimization
are essential for economic optimization, availability, and safety in grid
management. Fig. 5 illustrates the essence of the sequence diagram,
ighlighting the process of grid operation management and the inclu-

sion of a verification step, as well as how the system responds to both
FDI attacks and standard operational conditions.

Grid operation encompasses overseeing and controlling the grid,
identifying disturbances, alleviating congestion, and planning mainte-
ance and revisions. The grid operator ensures compliance with defined
arameters such as voltage limits and thermal capacities of compo-
ents. Methods such as load flow calculations and OPF are employed
or efficient energy distribution and cost minimization. Here, 𝑐𝑖 is the
ost coefficient for generator 𝑖 and 𝑃𝑖 and 𝑄𝑖 are the active and reactive
ower outputs of generator 𝑖.

min
∑

𝑖∈𝐺
𝑐𝑖𝑃

2
𝑖 (4)

s.t. 𝑃𝑖,𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖,𝑚𝑎𝑥 (5)

s.t. 𝑄𝑖,𝑚𝑖𝑛 ≤ 𝑄𝑖 ≤ 𝑄𝑖,𝑚𝑎𝑥 (6)

SE aids in verifying these calculations by providing a more accu-
rate grid state derived from various measurements. In SE, Bad Data
Detection (BDD) algorithms are crucial for identifying and correct-
ing erroneous measurements, ensuring the reliability of SE results.
BDDalgorithms use residual-based detectors to compare observed mea-
surements against estimated values, detecting significant discrepancies.

The modeling of grid operation management particularly empha-
sizes medium-voltage networks, focusing on the role of the DSO. It
assumes the DSO has comprehensive knowledge of the grid state (topol-
gy and state variables), essential for operational decision-making.
 i

10 
Operational constraints are defined, such as allowable voltage devia-
tions and maximum line thermal capacities, ensuring a safe operation.
The DSO employs specific algorithms for topology changes (cf. Algo-
ithm 1) and transformer tap adjustments (cf. Algorithm 2), adapting

the grid to maintain operational norms and respond effectively to
disturbances [107,108].

Algorithm 1 Simulation of Load Redistribution for Topology Changes
1: Close all switches in the power network
2: Perform a load flow calculation
3: Determine a minimum spanning tree using Kruskal’s algorithm
4: Select the line with the least load from the minimum spanning tree
5: Disconnect the selected line
6: Perform another load flow calculation
7: Check for compliance with the operational limits

Algorithm 2 Determination of the Optimal Tap Changer Position
1: for 𝑖 = 1 to maxNumberOfTaps do
2: Identify node with voltage band violation
3: Identify the nearest transformer
4: if Overvoltage and tap position not maximal then
5: tap position += 1
6: else if Undervoltage and tap position not minimal then
7: tap position -= 1
8: else
9: continue

10: end if
11: Perform a load flow calculation
12: end for

The optimal reconfiguration of the grid involves calculated steps
sing algorithms such as Kruskal’s for minimal spanning trees [109]

to redistribute loads and alleviate overloads. The focus is also on
ecentralized generation management, where the DSO regulates injec-
ions from DERs, balancing economic considerations with operational
ecessities.

6.2. Multi-staged attack simulation

In the simulation environment’s multi-stage attack simulation, Al-
gorithms 3 and 4 illustrate the precise methodologies attackers use
to infiltrate and destabilize critical systems. The abstract formalism is
based on prior works [110].

The algorithms delineate the attacker model as it systematically
executes operations to reach malicious goals. Modeled after the MITRE
ICS ATT&CK Matrix [111] and the SANS-Ukraine-Killchain [112,113],
the algorithms embedded in the simulation demonstrate the attacker’s
process for system detection, gradual network compromise, and coor-
inated exploitation based on identified system weaknesses.

The algorithms deploy the Multi-host, Multi-stage Vulnerability
nalysis (MulVAL) framework [114] to generate logical attack paths

hat reflect the attacker’s tactical navigation within the network. This
rocess is seamlessly integrated with the simulation environment’s
mplementation of the ICS Kill-Chain stages. It orchestrates the step-
ise sequence of exploitation, malware deployment, establishment of

ommand and control, and execution of actions determined by the
ommand and Control (C2) node, as facilitated by the algorithms.

The algorithms abstract real-world attack strategies, such as those
mployed by Havex [115] and Stuxnet [116], fitting them within the

simulation environment’s digital confines (see prior works [117]). This
maintains the authenticity of the attack techniques while adhering to
the simulated constraints, ensuring a realistic depiction of the potential
mpact on virtual representations of physical grid systems.
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Fig. 5. Sequence diagram illustrating grid operation management with verification process in response to FDI attacks and normal conditions.
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Through the algorithms, a C2 node is established within the network
o act as the hub of the attack, directing compromised hosts and
entralizing intelligence gathering—a pivotal element in the attack
arrative dictated by the algorithms.

The simulation environment’s adaptability is underscored by the
algorithms’ capability to model a variety of attack strategies, including
on-pattern-based attacks, simulating the erratic nature of real-world
hreats. These dynamic strategies challenge the system’s defenses and
valuate the robustness of their security concepts.

At the heart of the simulation lies the iterative propagation algo-
rithm, enabling the simulated attacker to modify its route in response to
etwork defenses such as firewall configurations. This reflects a realistic
pproach to circumventing or overcoming security measures within the
arget network.

The algorithms culminate in a definitive outcome that either dis-
rupts the system or achieves another specific aim. This event marks
he transition to the next phase of the attack — typically the energy
ttacker phase — highlighting the layered nature of the threat. The
esults of the algorithms’ execution offer detailed insights into the

attack’s impact, vital for enhancing detection and response strategies
ithin the simulation environment.

Through these features, the simulation environment’s algorithms
ffer a sophisticated and actionable portrayal of cyber threats, pro-
iding an essential resource for improving cyber security in critical
nfrastructure settings.
e

11 
6.3. False data injection attack

In the simulation environment, the False Data Injection (FDI) attack
s methodically modeled and executed as an advanced cyber threat
argeting the electrical energy information systems integrated within
PS. The simulation incorporates a layered approach reflecting the
PS’s structure, consisting of the perception execution layer, data trans-
ission layer, and application control layer. These layers correspond

o sensor/actuator networks, communication protocols, and operational
ontrol, respectively.

The FDI attack simulation introduces the manipulation of sensor
data, aiming to induce a controlled response from the system’s con-
trol mechanisms (cf. Algorithm 5). This is achieved by meticulously
generating an attack vector that alters specified measurements without
triggering any BDD alarms. The simulation adheres to the historical
context of FDI attacks, also known as stealthy deception attacks, load
edistribution attacks, or data integrity attacks, to create a realistic and
tealthy operational disruption.

An FDI attack in the simulation requires the attacker to adjust a
certain number of measurements to influence state variables success-
ully. The seminal work by [118] is harnessed to form an attack vector
hat bypasses BDD alarms. The vector is constructed using a structured

approach to avoid random anomalies, which would typically trigger
alarms.

The simulation outlines the relationship between the actual state
stimation with and without manipulated data, maintaining the same
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Algorithm 3 Initialization and Attack Simulation
1: Global C2Host, ICS_KillChainStages, SCADASubnets, AttackerGoals
2: Initialize the SCADA environment with network subnets and attack

scenarios
3: C2Host ← InitializeC2()
4: ICS_KillChainStages ← SetKillChainStages()
5: AttackerGoals ← SetAttackerGoals()
6: SCADASubnets ← InitializeSubnets()
7: Attacker ← InitializeAttacker(C2Host)
8: procedure Attack(𝑆 𝐶 𝐴𝐷 𝐴𝑆 𝑢𝑏𝑛𝑒𝑡𝑠, 𝐶2𝐻 𝑜𝑠𝑡)
9: for each subnet in SCADASubnets do

10: PropagateAttack(subnet, Attacker)
11: end for
12: EvaluateOutcome(AttackerGoals, SCADASubnets)
13: end procedure
14: function InitializeC2
15: C2 ← CreateNewC2Node()
16: InstallC2Malware(C2)
17: return C2
18: end function
19: function SetKillChainStages
20: Stages ← DefineStagesBasedOnRealAttacks()
21: return Stages
22: end function
23: function SetAttackerGoals
24: Goals ← DefineGoalsBasedOnMITREandSANS()
25: return Goals
26: end function
27: function InitializeSubnets
28: Subnets ← CaptureSubnetDetailsFromSCADA()
29: return Subnets
30: end function
31: function EvaluateOutcome(𝐺 𝑜𝑎𝑙 𝑠, 𝑆 𝑢𝑏𝑛𝑒𝑡𝑠)
32: Assessment ← EvaluateAgainstGoals(Goals, Subnets)
33: return Assessment
34: end function

‖ ⋅ ‖2 norm of the residual, ensuring no BDD alarms are activated. This
aspect of the simulation emphasizes the difficulty in detecting such
attacks due to their low observability.

To execute an FDI attack without triggering alarms, the simulation
evises a structured attack vector following the Eqs. (7)–(12). The
ttack vector formulation in an FDI attack is a crucial step where a
ector 𝑎 is created to manipulate specific measurements. This is done
hrough 𝑎 = 𝐻 ⋅ 𝑐, where 𝐻 is the Jacobian matrix, and 𝑐 is a non-
ero vector representing the deviation from the estimated normal state.
he state estimation with manipulated data involves recalculating the
stimated state �̂�𝑎 = �̂� + 𝑐, where �̂� is the true state, to reflect the
mpact of the attack. The ‖ ⋅ ‖2 Norm of the residual with manipulated
easurements, |𝑟𝑎|2, ensures that the manipulated measurements do

not trigger BDD alarms, maintaining |𝑟𝑎|2 = |𝑟|2, where 𝑟 is the residual
without manipulation. The definition of the attack vector as per the
manipulation target is expressed by setting 𝑎𝑖 = 𝐻[𝑖] ⋅ 𝑐 = 1 for the 𝑖th
targeted measurement, aligning the attack focus. This is subject to the
constraint that the alteration of the 𝑖th measurement must match the
desired outcome, while the definition of the BDD alarms suppression
condition ensures that 𝑎𝑘 = 𝐻[𝑘] ⋅ 𝑐 = 0 for all 𝑘 ∈ 𝑃 , where 𝑃 is the
set of protected measurements, to avoid detection.

Let 𝐻 be the Jacobian matrix, 𝑎 be the attack vector, 𝑐 be a non-zero
vector, �̂� be the true state, �̂�𝑎 be the estimated state with manipulation,

be the residual without manipulation, and 𝑟𝑎 be the residual with
anipulation. Let 𝑃 denote the set of protected measurements.

𝑎 = 𝐻 ⋅ 𝑐 (7)
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Algorithm 4 Attack Propagation within Subnets
1: procedure PropagateAttack(𝑆 𝑢𝑏𝑛𝑒𝑡, 𝐴𝑡𝑡𝑎𝑐 𝑘𝑒𝑟)
2: HostsToAttack ← IdentifyHosts(Subnet)
3: for each host in HostsToAttack do
4: ExploitVulnerabilities(host, Attacker)
5: InstallMalware(host, Attacker)
6: EstablishC2Communication(host, C2Host)
7: ExecuteC2Commands(host, C2Host)
8: if Primary target in subnet? then
9: Generate attack graph
0: Create attack trace
1: else
2: while Nodes connecting to other subnets do
3: if Subnet fully explored? then
4: if Unexplored subnets known? then
5: Move to new subnet
6: Create new sub-goals
7: else
8: Mark interesting nodes in subnet
9: end if
0: else
1: Mark nodes
2: Mark nodes leading elsewhere
3: end if
4: end while
5: if No new sub-goals then
6: Abort the attack propagation
7: end if
8: end if
9: DetermineOutcome(Attacker)
0: end for
1: end procedure
2: function IdentifyHosts(𝑆 𝑢𝑏𝑛𝑒𝑡)
3: Hosts ← DiscoverHostsInSubnet(Subnet)
4: return Hosts
5: end function
6: function ExploitVulnerabilities(𝐻 𝑜𝑠𝑡, 𝐴𝑡𝑡𝑎𝑐 𝑘𝑒𝑟)
7: Vulnerabilities ← GetHostVulnerabilities(Host)
8: Attacker.Exploit(Vulnerabilities)
9: end function
0: function InstallMalware(𝐻 𝑜𝑠𝑡, 𝐴𝑡𝑡𝑎𝑐 𝑘𝑒𝑟)
1: Attacker.Install(Host)
2: end function
3: function EstablishC2Communication(𝐻 𝑜𝑠𝑡, 𝐶2)
4: Attacker.Communicate(Host, C2)
5: end function
6: function ExecuteC2Commands(𝐻 𝑜𝑠𝑡, 𝐶2)
7: Commands ← C2.IssueCommands()
8: Attacker.Execute(Host, Commands)
9: end function
0: function DetermineOutcome(𝐴𝑡𝑡𝑎𝑐 𝑘𝑒𝑟)
1: Outcome ← AnalyzeAttackEffectiveness(Attacker)
2: return Outcome
3: end function

̂𝑎 = �̂� + 𝑐 (8)

‖𝑟𝑎‖2 = ‖𝑧𝑎 −𝐻 ̂𝑥𝑎‖2 =
(𝑧 + 𝑎) −𝐻(�̂� + 𝑐)‖2 =

‖𝑧 −𝐻 ̂𝑥‖2 = ‖𝑟‖2

(9)

𝛼𝑖 = min ‖𝑎‖0 = min
𝑐

‖𝐻 ⋅ 𝑐‖0 (10)
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s.t. 𝑎𝑖 = 𝐻[𝑖] ⋅ 𝑐 = 1 (11)

s.t. 𝑎𝑘 = 𝐻[𝑘] ⋅ 𝑐 = 0 ∀𝑘 ∈ 𝑃 (12)

The simulation then navigates through the attacker’s goals, using
deception tactics to simulate critical conditions such as an overloaded
transmission line, or concealment attacks to mask actual critical states.

he objective is to make the system operators believe that the grid is
unctioning normally or in a critical state, depending on the attack’s
ntention.

The attacker model within the simulation environment operates
under precise conditions. It leverages knowledge of the grid topology
nd accessible measurements to craft the minimum attack vector that
nfluences the desired state variable without raising suspicion. This for-

mulation transforms into an optimization problem, where the attacker
eeks to minimize the non-zero elements of the attack vector while
nsuring the desired alteration of a specific measurement.

Finally, the simulation investigates the operational processes within
he CPS. It scrutinizes whether manipulated measurements can cause
hanges in grid operational procedures and if such altered actions could

plunge the actual energy grid into a critical state, revealing the severity
of FDI attacks’ impact on the operation and safety of CPS.

Algorithm 5 FDI Attack Algorithm
1: Input: Network Topology, Sensor Data 𝑧, Jacobian Matrix 𝐻 ,

Protected Set 𝑃
2: Output: Manipulated Measurements 𝑧𝑎
3: procedure FDIVector(𝐻 , 𝑇 𝑎𝑟𝑔 𝑒𝑡𝑀 𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡, 𝑃 )
4: Initialize 𝑐 as a non-zero vector
5: Formulate the attack vector 𝑎 = 𝐻 ⋅ 𝑐
6: Set 𝑎𝑖 = 𝐻[𝑖] ⋅ 𝑐 = 1 for 𝑖 = 𝑇 𝑎𝑟𝑔 𝑒𝑡𝑀 𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
7: for all 𝑘 ∈ 𝑃 do
8: Ensure 𝑎𝑘 = 𝐻[𝑘] ⋅ 𝑐 = 0 to suppress BDD alarms
9: end for
0: Minimize the number of non-zero entries in 𝑎, min ‖𝑎‖0
1: return 𝑎
2: end procedure
3: procedure FDI(𝑧, 𝐻 , 𝑇 𝑎𝑟𝑔 𝑒𝑡𝑀 𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡, 𝑃 )
4: 𝑎 ← FDIVector(𝐻 , 𝑇 𝑎𝑟𝑔 𝑒𝑡𝑀 𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡, 𝑃 )
5: Create manipulated measurements 𝑧𝑎 = 𝑧 + 𝑎
6: Estimate manipulated state �̂�𝑎 = �̂� + 𝑐 where �̂� is the true state
7: return 𝑧𝑎
8: end procedure
9: procedure FDIAttackSimulation
0: Load grid topology and sensor data 𝑧
1: Compute Jacobian matrix 𝐻 for the grid
2: Define protected set 𝑃
3: Choose a target measurement for manipulation
4: 𝑧𝑎 ← FDI(𝑧, 𝐻 , 𝑇 𝑎𝑟𝑔 𝑒𝑡𝑀 𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡, 𝑃 )
5: Apply 𝑧𝑎 to the grid state estimation process
6: Analyze and compare the results with the true state
7: end procedure

6.4. OT-related attacks

Along with the FDI attack, the OT-related attack pertains to the
operational aspect, directly impacting the grid. Concurrently, the FDI
conceals these effects from the operator’s perspective. In the OT-level
ttack modeling, a central coordinator is employed. This coordinator
etermines actions for devices that compromise the grid based on
nformation from devices compromised in the IT attack propagation

hase.
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The grid’s state is evaluated using the classification, which defines
our main classes based on given threshold gradations and the grid’s

maximum and minimum size positions. These include:

• Class 0: Bus voltages and operational equipment utilization are
within the first threshold settings, and there are no unserved loads
in the grid.

• Class 1: Bus voltages or operational equipment utilization violate
the first threshold settings but remain within the second. No
unserved loads exist.

• Class 2: Second threshold settings are violated for bus voltages or
equipment utilization. Still, no unserved loads exist.

• Class 3: Unserved loads are present.

Assuming the coordinator is aware of the complete physical grid,
its state, and topology, it determines iterative bad-case scenarios. The
extent of these scenarios is defined by the attacker’s operational range
within the grid, which depends on the location and number of compro-
mised devices.

The coordinator prioritizes the types of compromised devices based
on the hierarchy in power grids. Devices from the field level are
prioritized lower than those from the station level, and so on. Priority is
sed to avoid overlaps in responsible grid areas. Actions are determined
nly for the highest priority devices that can influence grid areas not
overed by other devices.

The coordinator executes changes via the Pandapower grid lines,
nfluenced by the compromised devices. These changes include:

• Opening circuit breakers.
• Changing the output of DERs to arbitrary values between 0% and

100%.
• Changing the cos𝜙 of DERs for reactive power adjustment or

voltage change.
• Altering transformer tap settings based on transformer voltage.

Based on a snapshot of the Pandapower grid, specified changes are
ade. The grid’s state class is checked to be worse than the initial. If

orrect, changes are stored as command actions in a collection. This
ollection comprises the commands that would have the most severe
mpact on the grid state.

If the coordinator lacks sufficiently influential compromised de-
vices, false monitoring, and measurement actions are created based on
the physical grid state. This involves creating an altered grid image via
exceeding threshold values or applying previously described command
actions.

7. Strategies for cyber attack and defense

In this study, we introduce a novel methodology for the generation
f synthetic data related to cyber attacks. This methodology employs
 game-theoretic framework to analyze interactions between attack-
rs and defenders. In particular, we model the dynamics between an

attacker and defender in a power grid intrusion scenario, employing
key terms such as ‘‘starting capital’’, ‘‘funds’’, ‘‘betweenness centrality’’,
and ‘‘path optimization’’ to analyze their capabilities and strategic
ecision-making.

7.1. Conceptual overview

Our approach is rooted in game theory to examine the dynamics
involved in cyber warfare, as illustrated in Fig. 6. We simulate a
confrontation scenario, often termed red team vs. blue team, to assess
how these interactions impact the quality of data. In this simulation,
the attacker’s goal is to disrupt grid operations, and the defender’s
goal is to thwart these efforts. The attacker methodically assesses the
infrastructure to identify targets with significant potential for outage

costs. Conversely, the defender implements strategies to mitigate these
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Fig. 6. A comprehensive representation of our approach, highlighting a game-theoretic model that simulates the dynamic interactions in cyber warfare, emphasizing ongoing
learning and strategic adjustments.
t

risks. Our model features dynamic attack graph generation, which
volves with each iteration of the game, taking into account the defen-
ive measures. The attack’s likelihood of success is determined using
istorical data, with the attacker selecting the most efficient route
ia Dijkstra’s Algorithm. Learning capabilities are assigned to both
he attacker and defender, influencing their tactics as the simulation
rogresses. This iterative learning process involves transferring insights
rom one round to the next.

Essential network nodes in our framework are secured with IDS,
which triggers alerts to possible threats within a Python environ-
ment. This setup is supported by executing MulVAL [114] within

ocker containers. ML models, specifically developed using Python
ibraries such as sklearn [119], are refined with Grid Search for optimal
yperparameter selection, aiming to reduce overfitting.

7.2. Multi-stage attack modeling

To accurately simulate attacks on complex infrastructures such as
ower grids, it is essential to consider multi-stage attacks rather than
erely single-point breaches. Tools for generating attack graphs are

dept at mapping out complex scenarios where multiple vulnerabilities
re exploited simultaneously, resulting in sophisticated, multi-tiered
yber attacks. These tools consider a range of factors, including the
perating environment, the severity of vulnerabilities, and their conse-
uential impacts. A variety of these tools were evaluated. We observed
hat open-source options, despite their complexity and less intuitive
isual presentations, offer more comprehensive insights into potential
ttack pathways. Thus, for a balance of detail and scalability, we
elected tools such as MulVAL for their robustness and adaptability.
14 
MulVAL, a tool focused on creating logical attack graphs, is no-
table for its use of Datalog as an input syntax. This choice facilitates
the integration of established vulnerability databases such as the Na-
tional Vulnerability Database (NVD), enabling specific vulnerability
identification through their unique IDs. Additionally, it allows for
the integration of detailed host and network configurations, obtain-
able through an Open Vulnerability and Assessment Language (OVAL)
scanner and firewall management systems, enriching the contextual
understanding of potential attacks.

7.3. Dynamics of cyber attack and cyber defense

In our analysis, we apply a game-theoretical model to characterize
he interaction between attackers and defenders, as suggested in [120].

This interaction is depicted in Fig. 7. We employ the frameworks of
MITRE ATT&CK [121] and D3FEND [122] to model the behavior of
both parties. The attacker begins by scanning the network to pinpoint
the most vulnerable node, often those associated with high potential
outage costs, such as a SCADA Server, which is particularly prone to
costly disruptions due to its high replacement cost and critical role in
grid stability.

The defender’s strategy encompasses both proactive and reactive
steps to mitigate these risks, following the guidelines of [122]. Meth-
ods include the deployment of IDS for monitoring and access control
mechanisms for prevention. In the simulation context, IDS sensors,
specifically signature-based ones, are deployed to assess the system’s
defense capabilities by identifying anomalous activities based on estab-
lished rules. These sensors serve as a measure of the defense system’s
effectiveness in the simulation and are not factored into the final
evaluation stage, where the focus shifts to ML-based anomaly detection
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Fig. 7. Depiction of the interactive dynamics between attacker and defender, illustrat-
ng how the attacker probes the network and the defensive measures put in place,
ncluding the usage of signature-based IDS sensors within the simulation for detection.

metrics. The simulation experiments with varying numbers of sensors
to gauge their impact on data generation.

We also utilize MulVAL to generate an attack graph that mirrors
the attacker’s course of action. The attacker maneuvers through the
network, compromising elements until either achieving their objective
or being detected by an IDS, which triggers the defender’s responsive
actions. The encounter continues until either the attacker attains their
goal or the paths available become impracticable, signifying a thwarted
attack. Experience from each encounter informs both the attacker and
defender, leading to enhanced strategies and more sophisticated attacks
in subsequent simulations.

7.4. Offensive strategy in cyber attacks

The primary objective of the attacker is to disrupt grid opera-
tions, while strategically avoiding detection by IDS. The extent of
disruption is assessed based on the outage costs resulting from the
attacker’s maneuvers. The attacker progressively enhances their ex-
pertise, elevating their proficiency level with each successive attack.
This progression also includes updating their understanding of the
robability of successfully breaching a node. This proficiency, or skill
15 
rate, is a key determinant in the success of an attack and is influenced
by both previous successes and failures, following a probabilistic model.
These elements guide the attacker in selecting their course of action,
employing Dijkstra’s algorithm to identify the most effective path, as
referenced in [91]. The decision-making process involves calculating
edge (𝑖, 𝑗) weights in the attack graph, as shown in Eq. (13):

𝑊𝑖,𝑗 =
𝑡𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟𝑗

𝐶𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟
𝑗 ⋅ 𝑃 𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟

𝑗
(13)

In this equation, the ‘‘attacker’’ superscript signifies the evaluation
erspective. The term 𝑡 signifies the time required for a specific action,
s defined by the Time-to-Compromise (TTC) metric detailed in Sec-
ion 7.6. 𝑃 𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟

𝑗 quantifies the attacker’s estimated success probability
in compromising a node. At the outset, the attacker presumes a default
success rate of 1. However, with each attempt, whether successful (1)
or not (0), this rate is recalibrated based on the aggregate success
history. A successful breach is determined by comparing a randomly
generated number with the calculated success rate; if unsuccessful, the
ttacker either retries, thereby increasing resource consumption and
rompting the defender to bolster their defenses, or re-evaluates their
hosen path. The term 𝐶𝑎𝑡𝑡𝑎𝑐 𝑘𝑒𝑟

𝑗 represents the outage costs from the
ttacker’s viewpoint.

7.5. Defensive strategies in cyber security

The primary objective of the defender is to reduce the likelihood of
disruptions to grid operations caused by cyber attacks. Their strategy
includes both proactive and reactive measures: proactive measures
necessitate financial investment and are implemented over multiple
imulation rounds, while reactive measures are more immediate, re-

quiring no additional resources within the same simulation round. The
efender’s budget, encompassing both initial and accumulated funds,
s allocated towards implementing these cyber security measures. By
nalyzing the attacker’s most used paths from past attacks, the defender
ontinuously refines their understanding and approach to risk man-
gement. This analysis directly influences the risk assessment and the
esign of proactive defenses. Risk evaluation is quantified in Eq. (14),
here a learning rate, 𝑄𝑖, is assigned to each node 𝑖 in the network.
his rate starts at 1 and increases with each detected attack:

𝑅𝑖𝑠𝑘 =
𝑁
∑

𝑖=1
𝑃𝑖 ⋅ 𝐶𝑖 ⋅𝑄𝑖 (14)

For effective deployment, IDS sensors are strategically placed at
nodes with higher potential outage costs. To identify critical network
nodes, centrality algorithms, particularly the current flow betweenness
entrality method, are employed. This method considers the network as
n electrical circuit, differing from traditional betweenness centrality
hat assumes linear information flow.

𝑐𝐶 𝐵(𝑣) = 1
(𝑛 − 1) ⋅ (𝑛 − 2)

∑

𝑠,𝑡∈𝑉
𝜏𝑠𝑡(𝑣) (15)

𝜏𝑠𝑡(𝑣) = 1
2
(−|𝑏𝑠𝑡(𝑣)| +

∑

𝑒∋𝑉
|𝑥(𝑒)|) (16)

Eq. (15) computes the normalized current passing through a node
𝑣, with 𝜏𝑠𝑡(𝑣) representing the throughput and a normalization factor.
Eq. (16) calculates the current using 𝑏𝑠𝑡(𝑣), balancing it across all 𝑏𝑠𝑡(𝑣)
in the network while also factoring in edge resistances as part of the
entrality calculation.

𝑟( ⃗𝑒𝑖,𝑗 ) = 1
max(𝑐𝑜𝑢𝑡𝑎𝑔 𝑒𝑖 , 𝑐𝑜𝑢𝑡𝑎𝑔 𝑒𝑗 )

(17)

The resistance of each edge, defined in Eq. (17), plays a crucial role
n determining centrality, with lower resistance along edges between

nodes with higher outage costs. As the simulation progresses, the
defender adapts their sensor placement, learning from the attacker’s
previous actions and modifying their defense strategy accordingly.
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7.6. Guiding decision-making

In the game-theoretical framework of attacker-defender interac-
tions, a benchmark value is essential for assessing the effectiveness
of their strategies. This evaluation is conducted using risk assessment

odels tailored for cyber attacks on SCADA systems, which encompass
spects such as vulnerability, threat dynamics, defensive actions, and
heir overall impact as discussed in [123]. From the defender’s point of

view, this risk value is crucial to minimize, aiming to avert or lessen
potential harm. Conversely, the attacker seeks to maximize this value
to achieve their objectives. The 𝛽-TTC Metric, which plays a pivotal
role in practical cyber security risk estimation, takes into account
both system vulnerabilities and the skill level of the attacker, provid-
ing an estimate of the time required for system compromise [124].
This metric, along with the success probability for each component
of the attack 𝑃𝑗 , is calculated following the methodology in [124],
which leverages vulnerability information from public databases such
as the Common Vulnerabilities and Exposures (CVE), aligning well with
MulVAL criteria.

𝑇 𝑇 𝐶(𝑠, 𝑊 ) = 𝑡1 ⋅ 𝑃1 + 𝑡2 ⋅ (1 − 𝑃1) ⋅ (1 − 𝑢) (18)

The impact factor, represented by each component’s outage costs
𝑖, is evaluated based on its significance in grid functionality. These
utage costs are determined using methodologies such as the Purdue
odel [125] and an industry-specific model accounting for the cost of

unplanned outages based on peak power consumption [126]. In our
odel, we consider a severe scenario of a 12-hour grid outage. Risk

valuation is then articulated using Eq. (19):

𝑅𝑖𝑠𝑘 =
𝑁
∑

𝑖=1
𝑃𝑖 ⋅ 𝐶𝑖 (19)

Through this interactive model, a sequence of events in a cyber in-
ident is simulated, reflecting the complex dynamics between attackers
nd defenders. This simulation forms the basis for generating synthetic

data, capturing varied scenarios of cyber incidents.

8. Laboratory tests

Conducting laboratory tests is vital for validating the effectiveness
and realism of the simulation environment. This section describes
the experimental setup and methodologies used in the laboratory to
evaluate the implemented solutions in real-world conditions. While we
conducted our physical tests in our smart grid laboratory in Aachen,
our research setup for the simulation utilized a high-performance PC
equipped with a multicore CPU, a minimum of 16 GB of RAM, a
dedicated GPU with at least 8 GB of VRAM, and SSD storage.

8.1. Experimental setup

The evaluation of the implemented solutions follows a step-by-step
approach, conducted in both a laboratory and a simulation environ-
ment. The experimental setup, as illustrated in Fig. 8, replicates a low-
voltage grid with various consumers and producers. The experiment is
based on prior works [127].

The setup includes three thermal loads, each with a maximum
ower consumption of 20 kW, representing a residential street. Addi-
ionally, three facilities for feeding electrical energy are used: A 12 kW

and a 36 kW solar inverter and three 5 kVA battery inverters (total 15
VA). The grid is connected to the medium-voltage grid through a local
econdary substation to ensure supply security. All feeding plants are
ccessible remotely via control devices and a communication network
rom SCADA. The network architecture employs multiple switches for
edundancy, with sophisticated firewalls and switches capable of han-
ling maximum data flow. The L3 participants in the network, however,
re more rudimentary. A Raspberry Pi 4 is used for the control center,
nd the RTUs are connected via 100BASE-T Ethernet and tasked with
16 
relaying control commands. A commercially available laptop is used
o simulate an attacker’s position on an Edge Switch. Network packets

are captured and analyzed using another laptop equipped with tshark
(Version 3).

To examine various attack scenarios on a power grid, the results
from real experiments are compared with those from the simulation.
Parameterization of the model is carried out by measuring data rate
and latency. Two key measurements are conducted:

• Net data rate and latency for Gigabit-Ethernet are measured
between two laptops connected by a switch. iPerf3 (Version 3.9)
and ICMP ping tests are used. Results show a data rate of 941
Mbit/s and an average Round Trip Time (RTT) of 343 μs.

• Another measurement is performed with an ICMP ping from a
laptop to the control device of a 36 kW solar inverter. The average
RTT is approximately 540 μs.

The results of these measurements are used to adjust the parameters
of the network model to make the simulation as realistic as possible.

he modeling considers the maximum achievable transmission speed
nd delays in data transmission, derived from the measurement results.

This ensures an accurate representation of the real network conditions
in the simulation.

For effective management, the local SCADA system controls the
nergy supply, aiming to maximize local sources and minimize de-

pendence on the medium-voltage network, i.e. self-consumption op-
imization. The attacker, on the other hand, seeks to disrupt this
ommunication to compromise supply security or increase operational
osts.

8.2. Results

To ascertain the fidelity of the simulation results and to validate
he simulation environment, four distinct scenarios were examined
oth in the laboratory and within the simulation environment (cf.

Fig. 9). These scenarios were not designed to provide intrinsic value
n energy technology or information security but rather to demonstrate
he feasibility of conducting serious scientific investigations.

The initial scenario explored the system’s behavior under standard
regulation conditions without an attacker, focusing on the response of
the control center to increasing power demand. This was followed by
three distinct cyber attack scenarios, including an ARP spoofing attack
nd two ICMP flooding attacks.

The laboratory results are presented in a series of diagrams in
Fig. 9 showing power consumption and injection for the seven electrical
installations over the duration of the experiments, measured in seconds.

his included three thermal load, two PV Inverters, a battery inverter,
nd an adjustable local secondary substation. The power balance re-

sulting from the first six installations equates to the compensation that
econdary substation will provide via the medium voltage network to

ensure grid stability.
In the absence of an attacker, the control center’s response aimed

o cover the increasing load effectively. However, the ARP spoofing
nd ICMP flooding attacks revealed significant discrepancies in the
econdary substation’s power trajectory, with consumption sometimes
xceeding 40 kW, contrasting with peaks of under 30 kW during normal

operations.
The ARP spoofing scenario, executed via a laptop connected to

an Edge-Switch, employed Ethercap under Linux targeting the SCADA
system, resulted in the control center losing communication with the
remote terminal unit of the PV Inverter 36 kVA.

For the ICMP flooding attack, hping3 was utilized, inundating the
emote terminal unit with approximately 120,000 queries per second.

This deluge led to filled network buffers and packet loss, thereby
preventing the SCADA system from establishing TCP connections and
disrupting communication with the remote terminal units.
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Fig. 8. Overview of the laboratory setup illustrating an MV/LV grid with battery storage systems, PV inverters, and load banks. These components are remotely controllable and
monitored through a local SCADA system.
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Simulated scenarios exhibited promising concordance with labo-
atory outcomes. Although slight variations were evident due to the
hysical delays inherent in real-world devices, the overarching behav-
or was consistent with empirical data. The simulation confirmed that
he communication modeling within the framework could accurately

reflect the control center’s interaction with the power installations.
These experiments underscore the simulation environment’s ability

to mirror real-world operations with a high degree of realism. The repli-
cation of cyber attack impacts in the simulation further validated the
framework’s efficacy in modeling such disruptions and their potential
consequences on grid stability and control center operations.

8.3. Discussion

Our simulation environment offers a significant leap toward inte-
grating energy and communication systems into a singular application,
a step forward from co-simulations that often impose complexity. It is
designed to lower the barrier to entry, enabling users without deep
knowledge in communication technology to engage in simulations
effectively.

The Ethernet and WLAN reference implementations serve as vital
xamples, providing a foundation for users to build upon. They simplify
he process for new users and demonstrate potential expansion paths for
arious investigations. This user-friendliness extends the practical reach
f the simulation framework, making it a valuable tool for researchers.

However, the simulation’s accuracy depends on the fidelity of the
models used. Theoretical models may not always align with real-world
behavior, as seen in the laboratory’s empirical tests. Thus, to achieve
the most accurate simulations, it is advisable to calibrate models against
physical measurements rather than relying solely on literature values.
17 
Despite these limitations, the simulation framework’s structured ap-
proach, with defined interfaces and tasks, presents an advantageous al-
ternative to network simulators, offering clear guidance for implement-
ing communication technologies. Future work could focus on expand-
ing the framework to encompass a broader range of these technolo-
gies, further enabling the exploration of complex power grid scenarios
within the simulation environment.

The simulation environment’s integration of energy and commu-
nication systems emphasizes the development of an accessible and
omprehensive simulation framework for power grid cyber security. By
owering the barrier to entry and providing reference implementations
uch as Ethernet and WLAN, the framework democratizes the ability
o simulate complex cyber physical interactions, making it a powerful
ool not only for experts but also for researchers and practitioners
ess familiar with communication technology. This ease of use ensures
hat a wider audience can engage in the critical task of simulating
nd addressing vulnerabilities in smart grid systems. Moreover, the
tructured nature of the simulation, with well-defined interfaces and
asks, enhances its scalability and flexibility, making it suitable for a

range of investigations into grid resilience. While real-world accuracy
emains a challenge due to the reliance on theoretical models, the
ramework’s ability to serve as a bridge between co-simulation com-

plexity and real-world application strengthens its role as a foundational
tool for future research and development in power grid cyber security.
This contribution to making smart grid simulations more accessible and
practical underpins the paper’s broader objective of advancing security
solutions for critical infrastructure.

9. Attack simulation test

The testing of the simulation phases plays a key role in ensuring the
accuracy of the data samples used for ML-based IDS training. To gen-
erate reliable and representative data, it is crucial to first validate the
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Fig. 9. Overview of the results from the experiments conducted in both the laboratory and the simulation environment. Plot (a) represents the normal scenario in the laboratory,
and plot (c) depicts the corresponding scenario in the simulation environment. Plot (b) illustrates the ARP spoof-based attack scenario in the laboratory, while plot (d) shows the
same in the simulation environment.
plausibility of the simulated attack scenarios. This involves thoroughly
testing the simulation environment to ensure that both the physical
behavior of the power grid and the communication processes under
normal and attack-induced conditions are accurately replicated. Once
the simulation’s credibility is established, it is further evaluated by
comparing its results with those obtained from a real cyber physical
laboratory system, where similar attack scenarios are replicated. This
comparison verifies the precision of the simulation in reflecting real-
world behaviors, ensuring that the synthetic data produced for IDS
training is both realistic and comprehensive. Ultimately, this process
guarantees that the IDS models can effectively detect and respond to
cyber attacks, making the data generation a critical component in the
overall security framework.

In this section, we present case studies that offer comprehensive
insights into the practical applications of the attack simulation frame-
work, illustrating its adaptability and effectiveness in various scenar-
ios representative of real-world grid vulnerabilities and cyber attack
patterns.
18 
9.1. Procedure

The investigation procedure for attack simulation verification fo-
cuses on analyzing the impact of input parameters on the modeled
attacker, consisting of the Attack Propagator (simulating the IT compro-
mise of devices) and the Coordinator (executing energy-related actions
regarding the attack). Parameters influencing the propagation behavior
of the attacker and, indirectly, the actions of the Coordinator are
examined.

Key varying parameters include the firewall configuration and at-
tacker metadata. These directly affect the possibilities of attack propa-
gation and the coordination of attacks on the energy technology.

• Firewall Configuration: This parameter determines the virtual
zonal segmentation and hierarchical connection routes, thus in-
fluencing the distribution of vulnerabilities in the grid. The as-
signment is zone-specific, based on the assumption that remotely
located devices are easier to compromise.
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• Attacker Metadata: This includes information such as privileged
accesses, range, and grid file system mounts, which are defined
via vulnerability vectors and assigned to devices.

The attack simulation is carried out by selecting a measurement
alue to be manipulated (e.g., active power at a substation), followed
y the calculation and application of an optimal attack vector. This
anipulation influences the results of state estimation in the grid and

he control commands based on it.

(1) Definition of the Network Scenario: Selection of grid topol-
ogy and state variables, based on real or hypothetical grid
configurations.

(2) Application of the FDI Attack: Manipulation of the measure-
ment values and analysis of the effects on the estimated grid
state and operational control.

(3) Comparison of Grid States: Investigation of the differences
between the real grid state with and without FDI attack, and the
state simulated by the attack.

Through this investigation, the impact of measurement value
changes on operational control logic and the risk of critical grid states
can be assessed.

9.2. Case studies

This section presents the results of the case studies, focusing on
erifying the attack simulation aspect of the simulation environment.

9.2.0.1. Attack scenario 1. In this scenario (cf. Fig. 10, attack scenario
1), Attacker1 initiates the attack at the field level, directly compromis-
ing a workstation within the Office Network. Progressing vertically,
he attacker bypasses Firewall1 to attack data servers located in the
MZ Network. Subsequently, Attacker1 exploits vulnerabilities in the

SCADA Network’s HMI and sends malicious commands to an RTU in
he OT Network. This vertical propagation emphasizes the attacker’s
bility to move up through the network layers to reach operationally
ritical systems.

In this scenario, the lack of virtual zonal segmentation means that
he attacker faces fewer barriers in moving from the field level to
he operation level. However, the strict hierarchical connections im-

posed by the firewall configuration mean that the attacker must follow
a defined path, encountering each node’s specific defenses. The at-
acker metadata, such as gained privileges and access range, dictate
he effectiveness of each action, with higher privileges enabling deeper
enetration into the network.

9.2.0.2. Attack scenario 2. Diverging from the first scenario, Attacker2
exhibits both vertical and lateral propagation abilities (cf. Fig. 10,
attack scenario 2). After successfully gaining VPN access, Attacker2
focuses on Firewall3. If they successfully bypass it and gain access to
the SCADA servers, they proceed to exploit these servers. Concurrently,
the attacker also attempts to bypass Firewall2. Successful bypassing
leads them to the HMI. The attacker then exploits vulnerabilities within
the HMI to gain control. The final objective in this stream is to send
malicious commands to the RTU.

The absence of access control mechanisms opens up the network,
allowing the attacker to propagate laterally within the SCADA zone.
The ability to navigate through and exploit vulnerabilities in such
an environment reflects the sophisticated and targeted nature of the
ttacker. In this scenario, the attacker’s lateral movement capability
s a direct result of the more relaxed firewall configuration without
nforced access control rules, demonstrating how network defenses

ignificantly influence the attacker’s reach.

19 
9.2.0.3. Attack scenario 3. In the third attack scenario (cf. Fig. 10,
attack scenario 3), Attacker3 showcases a combination of both vertical
and lateral propagation abilities. Starting from a station-level node,
the attacker exploits the lack of hierarchical connections (horizontal
communication allowed), facilitating movement within the WAN zone.
This scenario highlights the attacker’s capability for lateral movements
across different network segments. The absence of stringent hierarchi-
al connections in a flat network topology, especially without robust
irewall rules, opens up possibilities for widespread compromise. The
ttacker’s ability to move laterally is significantly influenced by the
ore relaxed firewall configurations, underscoring the critical role of

network defenses in controlling an attacker’s reach.
Concurrently, this scenario also illustrates the effect of enforced

zonal segmentation by firewalls on attacker movements. Specifically,
ttacker3, beginning their campaign at an RTU within the OT network,

s confined to the station level. This confinement is a strategic out-
ome of the firewall-imposed virtual zonal segmentation. The attacker’s
rimary objective is to maximize the number of compromised devices
ithin this zone, eventually triggering a critical state in the network.
owever, the robust network perimeter defenses significantly limit

he attacker’s movements. This scenario, therefore, demonstrates the
ffectiveness of strategic firewall deployment in containing an attack,
estricting its movement to certain network segments, and consequently
itigating potential damage.

9.2.0.4. Attack scenario 4. Building on the constraints of Scenario 3,
additional hierarchical connection structures further restrict the at-
tacker’s movements such as no horizontal communication is allowed
(cf. Fig. 10, attack scenario 3). The attacker, starting at an RTU, is
nable to progress the attack, representing a scenario where the net-

work operates under normal conditions without any attack progression.
his scenario underscores the efficacy of a well-structured network in

mitigating the risk of an attack.
Adding a hierarchical connection structure parameter, the simula-

tion shows an environment where the attacker’s movement is severely
restricted. This scenario validates the effectiveness of a defense-in-
depth strategy. Even if the attacker compromises a station-level device,
the inability to move either up or down the network hierarchy prevents
any further attack progression. The attack is stifled due to both vertical
and horizontal movement restrictions.

9.3. FDI attack

This study investigates the implications of FDI attack tactics on Sim-
bench medium-voltage networks. It explores two principal scenarios:
the concealment of an actual overload problem and the fabrication of
a non-existent overload problem to elicit unnecessary grid regulatory
actions.

The simulation modeled a typical medium-voltage grid topology
ith the following critical operating intervals:

• Voltage levels between 0.965 pu and 1.055 pu.
• Maximum line loading capped at 100%.

The grid is visualized as an open ring grid with congestion issues
ntroduced by high consumer demand on specific branches.

The study carried out two experiments:

(1) Overload Problem Obscuration: Manipulation of active power
measurements to hide an overload issue at substation SS 73,
artificially increasing it by 3 MW (cf. Table 3).

(2) Feigned Overload Problem: Creation of a false overload situa-
tion by increasing the power flow reading by 4 MW on the line
from SS 62 to SS 63 leading to a maximum loading of 109.40%
at Line 1–2 (cf. Table 4).
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Fig. 10. Illustration of the simulated attack propagation within the simulation environment with respect to different scenario constellations.
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Table 3
Attack vector for increasing 3 MW at Busbar SS 73.

Meas. 𝑘 Element type Attack vector 𝑎𝑘 Correct value [MW], 𝑧𝑘 Falsified value [MW], �̂�𝑘
67 SS 72 −1.6860 0.272 −1.4140
68 SS 73 3.00 0.272 3.272
69 SS 74 −1.3139 0.2365 −1.0774
212 Line 72–73 1.6860 1.1296 2.8156
213 Line 73–74 −1.3145 0.8574 −0.4571
I
s

p

p
p

Table 4
Attack vector for increasing 4 MW on Line 62–63.

Meas. 𝑘 Element type Attack vector 𝑎𝑘 Correct value, 𝑧𝑘 Falsified value, �̂�𝑘
57 SS 62 −4.00 0.237 MW −3.763
58 SS 63 4 0.384 MW 4.384
202 Line 62–63 4.00 4.794 MW 8.794

The grid’s response to the FDI attack was twofold:

(1) When no FDI attack occurred, the grid operator effectively re-
turned the grid to normal operation through topology switches.

(2) Under FDI attack, the critical grid state was either successfully
obscured or falsely represented, influencing the grid operator’s
response to a non-existent condition.

The attacker’s success hinged on the capacity to analyze the current
grid state and identify exploitable scenarios. The assumption that the
attacker had compromised relevant RTUs may not hold in a secure grid
environment.

9.4. Discussion

Our simulation results highlight the critical role of parameterization
in dictating the trajectory and impact of cyber attacks within network
environments. The interaction between firewall configuration and at-
tacker metadata shapes the landscape of vulnerabilities and potential
attack pathways.

Firewalls serve as checkpoints in the network, determining data
low and accessibility. Their configuration plays a pivotal role in shap-
ng the attacker’s access points and routes. Virtual zonal segmenta-
ion and hierarchical connections introduce complexity and highlight
otential vulnerabilities of field devices.

This parameter sets the attacker’s skill level, reach, and method of
exploitation. Vulnerability vectors assigned to devices measure each
node’s resilience against the attacker’s capabilities, simulating a range
of attack strategies.

The process involves defining the grid scenario, executing FDI at-
acks, and comparing simulated and actual grid states. This approach
ffers insights into the effectiveness of defense mechanisms and the
ealism of the simulation.

While the simulation provides valuable insights, it is crucial to
cknowledge its limitations. In simulations, outcomes can be biased by
arameter selection and may not capture the complexity of real-world
etworks, including dynamic changes and unpredictable user behavior.
dditionally, the predictability of attacker behavior and the rapid
volution of cyber threats pose significant challenges, often resulting
n oversimplifications that fail to mirror actual conditions.

Regarding the FDI attack scenarios, the simulations demonstrated
grid state estimation’s susceptibility to FDI attacks. The attacker could
mask or simulate grid issues, though focused attacks on specific
ranches rather than the entire grid sufficed.

The adherence of the grid to the (n-1) criterion illustrated some
resilience to manipulation. However, the successful obscuration of real
problems highlights a significant risk to grid operations, emphasizing
the need for robust detection mechanisms.

The parameterization within cyber attack simulations emphasizes
the importance of a realistic and adaptable simulation environment
21 
for understanding and mitigating cyber threats in smart grids. The in-
terplay between firewall configurations and attacker capabilities high-
lights the dynamic complexity of the simulated environment, demon-
strating how defense mechanisms can influence the trajectory of at-
tacks. By adjusting parameters such as vulnerability vectors, the simula-
tion offers a range of attack scenarios, providing valuable insights into
the network’s defense strategies and how they can be enhanced to meet
real-world challenges. This flexibility in simulating varying attack paths
and defense mechanisms underlines the simulation environment’s role
in generating diverse, high-quality datasets for IDS training, ensuring
that these models are exposed to a broad spectrum of cyber threats.
The recognition of limitations in parameter selection and real-world
unpredictability further emphasizes the need for continued refinement,
aligning with the paper’s overall objective to develop a robust and
dynamic framework capable of addressing the evolving landscape of
smart grid cyber security. The insights drawn from these attack and
defense interactions validate the simulation’s role in improving detec-
tion systems and providing a more comprehensive understanding of
grid vulnerabilities.

10. Synthesizing data for IDS

The detailed simulation of our proposed approach also enables
the capability to generate synthetic data sets for training ML-based
DS. This data generation plays a foundational role in enabling the
imulation of complex, multi-layered cyber attacks, such as FDI and

denial-of-service attacks, across 21 sub-networks. The environment
roduces high-quality, diverse data samples that incorporate real-time

attacker-defender dynamics, allowing for the development of IDS mod-
els that can effectively detect and respond to evolving threats. An
essential feature of this environment is its ability to generate syn-
thetic data that represents critical infrastructure under attack, which
is difficult to obtain in real-world scenarios. This not only enables
the investigation of critical security incidents but also supports the
holistic security approach of prevention, detection, and reaction by
providing the necessary datasets to train and evaluate IDS approaches.
This capability ensures that IDS models are well-equipped to handle
advanced cyber threats, contributing to the overall resilience of smart
grid systems.

In the following, we summarize our methodology for IDS training
using ML techniques with synthetically created cyber attack data.

10.1. Research methodology

This research aimed to evaluate the influence of complex attack
atterns on data integrity and to explore how varying levels of com-
lexity impact the quality of data. For this purpose, we utilized a

multi-layered network structure inspired by the Purdue model [125].
This structure includes 21 sub-networks, each representing different
facets of an industrial control power grid. We integrated diverse defen-
sive strategies and offensive capabilities at various network levels. For
instance, the spread of IDS sensors within the corporate network was
adjusted, which significantly affected the course of attack propagation.
We found that deploying between 5 and 15 sensors optimally balanced
the rate of generated alerts from suspicious activities against excessive
interventions by defenders in our scenarios. We also varied parameters
that control the attack’s speed and reach, facilitating the creation of
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Table 5
Generated alerts from the tool in Unified2 format.

Label Size Label Size

sensor id 4 bytes source port/icmp type 2 bytes
event id 4 bytes dest. port/icmp code 2 bytes
event second 4 bytes protocol 1 byte
event microsecond 4 bytes impact flag 1 byte
signature id 4 bytes impact 1 byte
generator id 4 bytes blocked 1 byte
signature revision 4 bytes mpls label 4 bytes
classification id 4 bytes vlan id 2 bytes
priority id 4 bytes padding 2 bytes
ip source 16 bytes application id NA
ip destination 16 bytes sequence number NA

Fig. 11. Complexity assessment of conducted attacks under various initial conditions.
The 𝑦-axis denotes the mean complexity score throughout the simulations, comple-
mented by a 95% CI. The 𝑥-axis shows the count of IDS sensors deployed, while the
bar colors indicate the level of defensive investment.

complex data sets. The quality and variability of data were assessed by
training a range of ML-based anomaly detection models on attack logs
formatted in the Unified2 IDS event style [128], as detailed in Table 5.
These logs served as inputs for our ML models, designed to differentiate
alerts resulting from regular operations or attacker-induced events.

The investigation encompassed synthetic data creation, game-
theoretical modeling, optimizing attack paths, and constructing attack
graphs with computational complexity of 𝑂(𝑁3).

10.2. Examining attack complexity

We assessed the variation in attack strategies by quantifying the
complexity on a scale ranging from 0 (simplest) to 10 (highly varying),
referencing the Common Vulnerability Scoring System (CVSS) [129],
and analyzing the length of the attack propagation routes. To evaluate
the ML models effectively, we deployed them across 30 distinct attacks,
using varying initial configurations (refer to Fig. 11 for details). The
attacker’s expertise level was initially set at 0.5 and increased by 0.02
with each attack, eventually reaching a score of 1 by the 25th attack.
We also experimented with three distinct financial scenarios concerning
initial capital and incremental funds. Furthermore, the number of IDS
sensors was strategically altered to adjust the attack’s difficulty level.
Attack complexity was deduced based on the exploitation complexity
of the vulnerabilities involved. As depicted in Fig. 11, the average
complexity score for the vulnerabilities exploited in all 30 attacks is
illustrated, complete with a 95% CI. Notably, a rise in the quantity of
IDS sensors and available funds correlated with an increase in attack
complexity. Additionally, complexity escalated when the attacker had
to navigate alternative routes following defensive countermeasures or
exploit a greater number of vulnerabilities.
22 
Fig. 12. Evaluation of the RF model. The 𝑥-axis represents the simulation iteration,
while the color labels of the lines represent different metrics.

10.3. Evaluating model performance

For effective classification, we assessed various ML algorithms as
discussed in the IDS literature review [129] and supplemented by
insights from another study [130]. Among the supervised learning tech-
niques, we opted for RF, Decision Tree (DT), Support Vector Machine
(SVM), Complement Naïve Bayes (CNB), and XGB. The choice of CNB
over its Gaussian counterpart was driven by its superior handling of
imbalanced datasets, as noted in [131]. For unsupervised learning,
the K-Means algorithm was employed. Following the methodologies
outlined in prior research [129,130], we applied K-Means to time series
data, fine-tuning the ‘k’ value through Hyper Parameter Grid Search,
targeting optimal performance and reduced overfitting as observed in
our experiments.

These models were tested iteratively against the generated data, uti-
lizing the accumulated historical data for training and current data for
evaluation. This approach ensured a careful balance between minimiz-
ing overfitting and maintaining predictability. Performance analyses
were primarily conducted in scenarios with a moderate deployment of
sensors and financial resources. While various scenarios were explored,
the performance rankings of the models remained relatively consistent.

Table 6 showcases the efficacy of each ML method in the final
simulation iteration, evaluated using several classification metrics like
accuracy, 𝐹1-score, Area Under Curve (AUC), and MCC, particularly
relevant for datasets with imbalances. A notable observation was the
SVM’s protracted processing time with large data volumes, aligning
with the findings in [132], rendering it less suitable for our outlined
evaluation method in Section 10.1.

In our analyses, the K-Means algorithm lagged in performance,
whereas the XGB model excelled in both training efficiency and key
performance metrics. Figs. 12 and 13 illustrate the progression of the
RF and XGB models across simulations 1–29, highlighting the correla-
tion between the number of attacks and their respective success rates.
Initially, both models faced challenges in accurately identifying specific
attacks but gradually improved their understanding of attack dynamics.
Interestingly, past the 23rd attack, no attacks were successful, and a
skill plateau was achieved by the attacker by the 25th attack.

Further, we assessed the effectiveness of the defender’s role us-
ing three distinct attack data generation approaches (see Fig. 14).
Extending the simulations to 50 runs ensured result consistency. The
first approach involved interactions with the defender, as previously
described. In the second approach, labeled ‘‘single attack’’, the attacker
randomly navigated without defensive countermeasures. The third sce-
nario saw the attacker choosing the most efficient path in the absence
of any defense strategy. XGB models, trained on data from the initial
29 attacks, were tested against the latter 21 attacks, each subjected
to the various generation methods. Comparing the outcomes across
‘‘random’’, ‘‘single attack’’, and ‘‘with defender’’ scenarios demonstrated
that data generated with an active defender role significantly enhanced
detection quality. This improvement can be attributed to the diversified
and realistic attack patterns emerging from the strategic modifications
enforced by the defender, which were less apparent in the random or
the single attack methodologies.
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Table 6
Scores of the different ML models using various metrics.
Metric RF DT SVM CNB K-Means XGB

Accuracy 0.9375 0.8182 0.9382 0.6697 0.5003 1
Recall 0.8889 0.8889 0.89 0.6810 0.0003 0.8889
Precision 0.9999 0.7273 0.9889 0.7 0.5555 1
𝐹1-Score 0.9411 0.8000 0.9369 0.6904 0.0006 0.9412
AUC 0.9444 0.8391 0.9251 0.6841 0.5279 0.9444
MCC 0.9333 0.6471 0.8721 0.3367 0.0005 0.9428
o

t
n
r
p

Fig. 13. Evaluation of the XGB model. The 𝑥-axis represents the simulation iteration,
hile the color labels of the lines represent different metrics.

Fig. 14. Evaluation of the different generation methods. The 𝑦-axis represents the MCC
ver simulation runs 30–50, while the error bar represents the 95% CI. The 𝑥-axis
epresents the training data, and the color labels of the bars represent the test data.

10.4. Discussion

Throughout our research, we noticed that an increase in both the
number of deployed sensors and the available defense budget led to
heightened complexity in attack patterns. This complexity emerged
as attackers were compelled to navigate more challenging routes, of-
ten encountering sophisticated vulnerabilities. Such a shift in strategy
might be attributed to either the original path being obstructed by the
defender’s sensors and reactive measures or the attacker’s dwindling
uccess rate owing to heightened preventative actions demanding more
esources. Additionally, our analysis indicated a notable improvement
n the ML models’ predictive capacities with an increase in the volume
f attacks used for training, providing a richer data set for learning.

The continuous interaction between the attacker and defender cre-
ated a varied training dataset, equipping the ML models to better
dapt and respond to evolving attack patterns. This was particularly
pparent in scenarios where defender interventions were part of the
raining data, which resulted in superior detection capabilities. In
ur final set of experiments, it was evident that data reflecting the
efender’s participation in the attack scenarios established a more
omplex dynamic. In contrast, models trained on datasets devoid of
his interactive aspect struggled to fully grasp the nuances of attack
ethodologies, underscoring the value of including defender-attacker

nteractions in training datasets for more effective modeling of diverse
ttack scenarios.

The increased complexity of attack patterns, driven by the de-
fender’s proactive measures, illustrates the realistic and dynamic nature
f the simulation, which not only replicates the evolving behavior of
23 
cyber attacks but also generates diverse datasets critical for training
robust IDS models. The simulation’s ability to capture these interactions
demonstrates how defense strategies directly influence the sophisti-
cation of attacks, thereby validating the importance of incorporating
such dynamic scenarios into IDS training. This approach ensures that
the IDS models are better equipped to detect and respond to complex
and evolving threats, highlighting the overall value of the simulation
environment in advancing smart grid cyber security by offering a robust
platform for both attack scenario generation and defense strategy eval-
uation. Thus, this interaction between attack and defense contributes to
the broader goal of the paper: enhancing the resilience of smart grids
through advanced simulation and data-driven defense mechanisms.

11. Decision support system

Building upon the knowledge and experiences gleaned from the case
studies, this section lays the foundation for introducing the DSS for
cyber security. The DSS is characterized as a pivotal tool, developed
with the objective of augmenting decision-making capabilities in the
context of cyber threats. By harnessing data and findings derived
from the simulated attack scenarios, the DSS provides grid operators
with a robust platform for strategic and informed decision-making
within real-time cyber threat environments. This section also presents
an exemplary application of the simulation environment, aimed at
evaluating the effectiveness of the DSS within the context of power
grids.

11.1. Design

The evolving landscape of cyber security, particularly in the realm
f distribution grid management, necessitates a robust and adapt-

able DSS. The system outlined here leverages ADT to model threats
and defenses [133]. This methodical approach allows for a structured
and comprehensive risk assessment, addressing the complex challenges
faced by distribution grids.

ADT are instrumental in visualizing and quantifying threats and
defenses within distribution grids. These trees start with a broad at-
tack category at the root, which is then dissected into more spe-
cific sub-attacks or countermeasures. The nodes within these trees
are quantified with risk attributes — probability, impact, and cost —
offering a detailed perspective on vulnerabilities and the efficacy of
countermeasures.

After constructing the ADTs models, each node is quantitatively an-
notated with risk attributes using two principal equations: the product
of probability and impact, 𝑅𝑖 = 𝑃𝑖 ⋅ 𝐼𝑖, and a more comprehensive for-
mula incorporating the cost of the attack, 𝑅𝑖 =

𝑃𝑖⋅𝐼𝑖
𝐶𝑖

. This multifaceted
risk assessment approach prevents overlooking the cost dimension,
ensuring balanced and realistic threat evaluations.

The risk attributes assigned to each attack and defense node lead
o a bottom-up propagation process. Here, the risk values from the leaf
odes are aggregated up to their parent nodes, culminating in a total
isk assessment at the root node. This process reflects the overall risk
osture of the system.

The Sobol method is utilized to analyze the variance-based global
sensitivity of the system [134]. It quantifies how individual or grouped
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Fig. 15. Illustration of the ADT scenario for the DSS experiment.
attributes contribute to overall risk variance, identifying which at-
tributes most significantly influence the system’s risk. This insight is
critical for targeted resource allocation and prioritization.

The DSS employs ADT mincuts and a three-dimensional relational
matrix for identifying cost-effective countermeasures [135]. This matrix
helps in tackling single and multiple objective optimization problems,
finding the minimal set of defenses that efficiently cover targeted
attacks while minimizing costs.

Continuous risk assessment is a core feature of the system, crucial
for adapting to the dynamic nature of cyber security threats. Regular
updates to the probability and impact values of attack and defense
nodes, informed by real-time security monitoring, ensure that the
system’s risk assessments are current and accurate.

The system also explores defense deployment optimization strate-
gies, examining various combinations to achieve cost-effective risk mit-
igation. This involves considering factors such as return on investment
and overall risk reduction.

Using risk quadrants aligned with the OWASP risk rating methodol-
ogy [136], the system categorizes attacks by severity and probability.
This enables prioritizing defenses against the most significant risks, as
evidenced by a marked reduction in threat density within the critical
quadrant following countermeasure application.

11.2. Experiment

The DSS within the simulated power grid environment was set up to
evaluate the effectiveness of various countermeasures against a range
of cyber security threats. The simulation was conducted to replicate
a real-world scenario where an adversary’s goal is to compromise the
power grid system. The experiment was designed to test the robustness
of defensive strategies and to assess their impact on mitigating the risks
associated with different types of cyber attacks.

The simulation environment considers a structured ADT (cf. Fig. 15)
with a hierarchical framework that mapped the progression from a
broad threat objective to specific attack techniques. This structure
included a root attack node, sub-objective attack nodes, intermedi-
ate attack nodes and strategies, leaf attack nodes, and corresponding
countermeasure nodes.

Upon execution of the initial risk assessment, the simulation pro-
vided risk values for each attack node, quantifying the probability and
impact of potential cyber threats without any defensive measures (cf.
Fig. 16). These values served as a baseline to measure the effectiveness
of the implemented countermeasures (cf. Table 7).

As countermeasures were introduced into the simulation, their ef-
fectiveness was determined by the updated risk values. The system
measured the impact of these countermeasures on reducing the like-
lihood and potential damage of each attack scenario. Notable results
included significant risk reduction for attacks such as ‘‘Endpoint Denial
of Service’’ and ‘‘Network Denial of Service’’ where the introduction
of countermeasures such as ‘‘SC-5: Denial of Service Protection’’ and
‘‘SC-7: Boundary Protection’’ lowered the risk from critical levels to less
severe categories.

However, some attack vectors, such as MITM remained resistant to
the countermeasures, indicating a need for more sophisticated defen-
sive strategies. This was consistent with the earlier observed note that
24 
Fig. 16. Illustration of quadrant plot depicting the DSS result to the ADT scenario.

even after applying defenses, At_8 did not show a significant reduction
in risk, implying that it did not have a substantial influence on the
overall system risk.

A sensitivity analysis was conducted to understand the variabil-
ity in the system’s risk posture due to changes in the defense at-
tributes. This analysis highlighted the importance of defense mecha-
nisms such as ‘‘Df_4: Anomaly Detection Systems’’ in minimizing the
overall risk. However, it also identified a threshold beyond which
further enhancements to certain countermeasures, such as ‘‘Df_4’’ did
not yield additional risk reduction, suggesting an optimal point for
resource allocation.

The Sobol method used in the experiment underscored its suitability
for complex, high-dimensional problems. It allowed for a rapid conver-
gence, meaning that an accurate assessment of the system’s risk could
be achieved with fewer samples. This contributed to an efficient and
comprehensive analysis of the power grid’s cyber security posture.

11.3. Discussion

The underlying simulation environment plays a crucial role in the
development and testing of the DSS for power grid cyber security. This
environment, by its very design, is tailored to replicate the varying
cyber physical behavior of power grid systems, along with the multi-
faceted aspects of cyber security impacts, encompassing various attack
and defense mechanisms.

At the core of this simulation is the capacity to mimic real-world
scenarios and cyber physical interactions within the power grid. This
realism is essential for evaluating the system’s resilience against a
range of cyber threats and determining the efficacy of various defense
strategies. By simulating the behavior of both the grid and potential
cyber threats, the environment provides a comprehensive platform for
analyzing how different attack vectors can affect the grid’s functionality
and reliability.
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Table 7
Risk vector values for attack events in ADT before and after bottom-up propagation.

Node label ADT node name Initial probability Initial impact Initial risk Upd. probability Upd. impact Upd. risk
At_1 Endpoint Denial of Service 0.2 3 0.08 0.06 1.5 0.014
At_2 Network Denial of Service 0.65 7 0.75 0.19 1.4 0.04
At_3 Resource Depletion 0.32 6 0.48 0.09 3.6 0.08
At_4 Drive-By Compromise 0.39 7 0.68 0.15 3.5 0.13
At_5 Network Sniffing 0.4 4 0.22 0.28 1.6 0.06
At_6 Credential Access 0.3 4 0.17 0.18 1.2 0.03
At_7 Intercept comms 0.25 8 0.4 0.12 3.6 0.09
At_8 Man in the middle 0.72 8 1.15 0.59 6.08 0.71
At_9 Spoof db 0.55 4.5 0.61 0.27 2.25 0.15
At_10 Spearphishing Attachment 0.67 7 1.56 0.20 2.8 0.18
At_11 Credential Dumping 0.4 7.5 0.75 0.24 4.5 0.27
At_12 SQL Injection 0.7 6.5 0.60 0.14 4.55 0.08
At_13 Inject false data 0.75 8 1.5 0.15 7.2 0.27
s
e
d
s
e
m
o
o
o

t
c
w
t
s
r

The DSS emerges as a direct consequence of this simulated envi-
ronment, drawing on the insights gained from these detailed analyses.
Its development is predicated on the understanding that managing
yber security in power grids is not just about confronting isolated

cyber incidents but involves a holistic approach to understanding and
itigating the cascading effects these incidents can have on the entire

rid infrastructure.
In this context, the DSS serves as an advanced tool that offers

strategic guidance on incident response. It leverages the differences in
modeling of ADT to dissect and comprehend potential vulnerabilities
and entry points within the power grid. This level of detail ensures that
the strategies developed are both precise and tailored to the specificities
of each threat.

Moreover, the simulation environment enables scenarios where a
dynamic risk assessment process can be evaluated and tested. By con-
tinually adjusting to changing attack parameters and recalculating
risk values, the DSS exemplifies adaptability and sophistication. This
constant evolution is crucial in a domain where threats are not static
but evolve rapidly, requiring a response system that is equally agile and
forward-looking.

The sensitivity analysis using the Sobol method, performed within
his environment, enhances the DSS’s capability to prioritize and al-
ocate resources effectively. By understanding the systemic impact of
arious attack and defense attributes, the DSS can guide decisions on
here to focus efforts for maximum impact and cost efficiency.

However, it is essential to recognize that the simulation environ-
ment, while advanced, cannot perfectly replicate every real-world vari-
able or unpredictable human factor in cyber attacks. As a result, while
he DSS provides invaluable insights and strategic guidance, its recom-
endations must be tempered with an understanding of its inherent

imitations.
The simulation environment’s role in the development of the DSS

ighlights the importance of a holistic and dynamic approach to power
grid cyber security. By replicating different cyber–physical behavior,
the simulation environment ensures that both attack and defense mech-
anisms can be comprehensively analyzed, providing a platform for
ealistic and detailed scenario generation. This realism is central to
he effectiveness of the DSS, which relies on accurate, real-time data

to offer strategic incident response guidance. Furthermore, the dy-
namic risk assessment process that continuously evolves based on
changing attack parameters underscores the adaptability required in
modern cyber security solutions. The ability of the DSS to recalibrate
in response to varying attack vectors and defense strategies high-
lights the sophistication of the approach, aligning with the overall
message of the paper: that robust, real-time simulation environments
are essential for developing resilient and responsive cyber security
systems for critical infrastructure. The sensitivity analysis and resource
rioritization capabilities within the DSS add further value, showing
ow simulation-driven insights can optimize defense strategies while
cknowledging the system’s limitations, such as its ability to replicate

every unpredictable human element in real-world attacks. This rein-
forces the need for continued refinement and validation of both the

simulation environment and the DSS in evolving threat landscapes. t
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12. Conclusion

12.1. Summary

In this paper, we have developed and validated a novel, comprehen-
sive simulation environment that integrates energy and communication
systems into a single unified platform. This environment not only
moves beyond the limitations of traditional co-simulation approaches
but also offers significant contributions to the understanding and miti-
gation of cyber threats in power grids. Our model is capable of simulat-
ing complex cyber physical interactions, including sophisticated cyber
attacks such as FDI, and generating high-quality, synthetic datasets
that are crucial for training ML-based IDS. These synthetic datasets
provide researchers with a realistic yet flexible means to develop, train,
and test IDS in scenarios that are difficult or impossible to recreate
in real-world environments due to the security, ethical, and logistical
challenges associated with critical infrastructure.

A key contribution of our simulation environment lies in its ability
to model the dynamic interaction between attackers and defenders,
imulating real-time adjustments in defensive strategies based on the
volving nature of cyber threats. This dynamic aspect is crucial as static
efense measures are often insufficient in the face of advanced, multi-
tage cyber attacks. The dynamic simulation framework enables us to
valuate how real-time defensive measures, such as IDS sensor place-
ents and firewall configurations, impact the detection and mitigation

f cyber threats. This approach provides new insights into the influence
f defense strategies on overall network security and the effectiveness
f ML-based IDS.

Moreover, the simulation environment provides a foundation for
generating diverse datasets, a critical requirement for improving the
adaptability and accuracy of ML models used in IDS. By simulating
attack scenarios with varying complexities, we were able to produce
data that reflects different attack vectors, from simple one-step attacks
to complex, multi-stage attacks involving multiple entry points into the
power grid’s communication and operational technology layers. The
ability to simulate these variations ensures that the datasets used for
training IDS are sufficiently diverse, preparing the system to detect
a wide range of threats. This is particularly important because real-
world cyber attacks often evolve and adapt in response to the defender’s
strategies. The ability of the environment to simulate both attacker
adaptation and defender responses ensures that IDS models trained in
this environment are robust and capable of detecting even previously
unseen attack strategies.

The results of our work also emphasize the importance of parame-
erization in cyber attack simulations. The interaction between firewall
onfigurations, IDS sensor placements, and the metadata associated
ith the attacker significantly influences the vulnerability landscape of

he simulated network. For instance, variations in the placement of IDS
ensors across different sub-networks and the corresponding firewall
ules resulted in significant differences in the detection capabilities of
he IDS models. These findings underscore the importance of fine-
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tuning the defensive infrastructure within power grids to maximize the
effectiveness of detection and response systems.

The validation of our simulation environment was carried out
hrough a series of laboratory tests, in which we replicated cyber attack

scenarios both in the simulation environment and in a real-world cyber
physical laboratory setup. The results of these experiments demon-
strated the high precision of our simulation platform in replicating both
the physical behavior of the power grid and the communication pro-
cesses under both normal and attack-induced conditions. By comparing
the results of the simulation with those of the real-world system, we
were able to assess the accuracy of the simulated environment in terms
of replicating real-world scenarios. This validation process is a critical
step in establishing the credibility of the simulation as a tool for IDS
and DSS development, as it ensures that the synthetic data generated
for training IDS models is both realistic and comprehensive.

A significant aspect of the validation process involved the compar-
son of grid state estimations under normal and attack conditions. The
eplication of FDI attacks within both environments highlighted the
ulnerability of grid state estimations to manipulations. These manip-
lations can lead to severe consequences, such as incorrect decision-
aking by grid operators, resulting in widespread outages or damage

o the grid infrastructure. The simulation environment’s ability to repli-
ate these scenarios underscores the importance of robust detection
echanisms, such as ML-based IDS, in safeguarding grid operations

from cyber threats.
In addition to providing a platform for IDS development, our sim-

ulation environment also supports the development and testing of a
SS for power grid cyber security. The DSS synthesizes data from the

DS and other monitoring systems to offer real-time strategic guidance
during cyber incidents. This capability is particularly important in
the context of smart grids, where quick decision-making is critical to
preventing or mitigating the effects of cyber attacks. The ability of the
DSS to provide actionable insights in real time allows grid operators to
respond to incidents more effectively, thereby reducing the potential
impact of an attack. The dynamic nature of the simulation environ-
ment, which includes real-time adjustments to defense strategies and
attack progression, ensures that the DSS is trained on data that reflects
realistic cyber threat scenarios, further enhancing its effectiveness.

This paper presents a sophisticated and fully integrated simulation
nvironment that advances the state of the art in smart grid cyber
ecurity. By providing a platform for generating realistic training data,
alidating attack scenarios, and supporting dynamic defense strategies,
his environment serves as a powerful tool for both IDS and DSS devel-
pment. The contributions of this work lie not only in the development
f the simulation environment itself but also in the insights gained
rom the dynamic interaction between attackers and defenders, the
mportance of parameterization, and the role of validation through
aboratory testing. While our simulation environment is robust, it relies
n theoretical models that may not fully capture the complexity of
eal-world human factors and cyber attacks. Additionally, the scope
f the platform, although comprehensive in simulating cyber–physical
nteractions in power grids, could be expanded further.

12.2. Outlook

Future work should aim to scale the simulation to include larger
and more complex grid scenarios, including DERs and microgrids.
Expanding the scope of the simulation to include these additional
elements will provide a more comprehensive view of the potential
vulnerabilities within modern power grids, as well as the strategies
that can be employed to defend against cyber threats. Additionally, the
incorporation of human factors into the simulation environment, such
as the role of human operators in responding to cyber incidents, would

provide a more complete perspective on power grid cyber security.

26 
A further area for improvement is the incorporation of more ad-
vanced algorithms within both the IDS and DSS. As cyber threats
ontinue to evolve, so too must the tools used to detect and respond to
hem. Incorporating state-of-the-art ML algorithms into the IDS, as well
s more advanced decision-making algorithms into the DSS, will help
nsure that these systems remain effective in the face of increasingly
ophisticated cyber attacks. In particular, the use of reinforcement
earning techniques, which allow systems to learn and adapt over time
ased on feedback from previous incidents, could significantly improve
he adaptability of both the IDS and DSS.

Moreover, there is potential to extend the use of synthetic data gen-
eration beyond IDS training to other areas of cyber security research.
For example, the data generated by our simulation environment could
be used to develop new algorithms for automated incident response,
or to evaluate the effectiveness of different network configurations in
mitigating the impact of cyber attacks. By leveraging the flexibility
of synthetic data, researchers can explore a wide range of scenarios
and strategies that would be difficult or impossible to investigate in a
real-world setting.

Future work will focus on expanding the scope of the simulation,
incorporating more advanced algorithms, and addressing the role of
human factors in cyber attack resilience. These developments will
further enhance the robustness and effectiveness of power grid cyber
security solutions, helping to protect critical infrastructure from the
rowing threat of cyber attacks.
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