
CAIBA: Multicast Source Authentication for CAN Through Reactive Bit Flipping

Eric Wagner∗†, Frederik Basels∗, Jan Bauer∗, Till Zimmermann‡, Klaus Wehrle†, and Martin Henze§∗

∗Cyber Analysis & Defense, Fraunhofer FKIE ⋅ {firstname.lastname}@fkie.fraunhofer.de
†Communication and Distributed Systems, RWTH Aachen University ⋅ {lastname}@comsys.rwth-aachen.de

‡Distributed Systems Group, Osnabrück University ⋅ zimmermann@uos.de
§Security and Privacy in Industrial Cooperation, RWTH Aachen University ⋅ henze@spice.rwth-aachen.de

Abstract—Controller Area Networks (CANs) are the back-
bone for reliable intra-vehicular communication. Recent
cyberattacks have, however, exposed the weaknesses of CAN,
which was designed without any security considerations in
the 1980s. Current efforts to retrofit security via intrusion
detection or message authentication codes are insufficient to
fully secure CAN as they cannot adequately protect against
masquerading attacks, where a compromised communica-
tion device, a so-called electronic control units, imitates
another device. To remedy this situation, multicast source
authentication is required to reliably identify the senders
of messages. In this paper, we present CAIBA, a novel
multicast source authentication scheme specifically designed
for communication buses like CAN. CAIBA relies on an
authenticator overwriting authentication tags on-the-fly, such
that a receiver only reads a valid tag if not only the integrity
of a message but also its source can be verified. To integrate
CAIBA into CAN, we devise a special message authenti-
cation scheme and a reactive bit overwriting mechanism.
We achieve interoperability with legacy CAN devices, while
protecting receivers implementing the AUTOSAR SecOC
standard against masquerading attacks without communi-
cation overhead or verification delays.

Index Terms—multicast source authentication, CAN bus,
message authentication codes, AUTOSAR SecOC

1. Introduction

Virtually all motor vehicles currently on the roads are
equipped with hundreds of small embedded computers,
so-called Electronic Control Units (ECUs), that monitor
and control vital vehicle functions [34]. To realize overar-
ching functionality, these ECUs require means to commu-
nicate reliably with each other in harsh environments. The
de-facto standard for such in-vehicle interconnection is the
Controller Area Network (CAN) bus. Developed in the
1980s under the assumption of vehicles being physically
isolated systems, security was not a design goal of CAN.

However, contrary to this original assumption, modern
cars offer more and more (wireless) connectivity and are
thus increasingly exposed to cyberthreats with potentially
fatal consequences [13]. For example, a remote compro-
mise of the infotainment system of a Tesla Model S
enabled attackers to control the car’s acceleration, leaving
potential passengers at the attacker’s mercy [54]. This ex-
ample is not an isolated incident, but only one of many re-
cent attack demonstrations [2], [13], [17], [20], [50], [54],

[55], [79]. Those attacks exploit that, once an ECU has
been compromised, CAN provides no protection against
ECU masquerading and arbitrary message spoofing [38].
Concerningly, the dark web offers car theft devices today
that exploit the vulnerability of CAN [2]. These devices
are actively used by criminals to steal modern cars [2].

To overcome these serious vulnerabilities, different
streams of research propose intrusion detection, covert
channels, as well as cryptographic approaches [4]. While
Intrusion Detection Systems (IDSs) [42] do not interfere
with legacy devices, they provide imperfect detection and
often only alert after a sequence of manipulations [68].
Moreover, recent research has shown how these IDSs can
be evaded by an attacker in practice [8], [65]. Covert
channels [24], [49], [57], [68] only provide reduced se-
curity and cannot protect against masquerading attacks.
Cryptographic approaches [46], also comprising the AU-
TOSAR specification for Secure Onboard Communica-
tion (SecOC) [5] currently in adoption by multiple ven-
dors [34], mostly rely on group-keys to protect against
outside attackers. AUTOSAR SecOC reserves a fraction
of each CAN payload, e.g., 28 bit, to transmit an authen-
tication tag computed with the help of a secret key shared
among all ECUs. These approaches thus do not protect
against compromised ECUs (as used during e.g., the Tesla
Model S attack [54]) as those can still masquerade as any
entities they can receive from.

The main challenge underlying all these approaches
is the need for both reliable and immediate protection of
multicast communication. Most notably, CAN is a broad-
cast communication protocol, where messages are often
intended for multiple receivers [23]. Typically, to verify
the source of a message in a multicast scenario, digital
signatures are used as authentication and verification rely
on different keys. However, digital signatures are not ap-
plicable in CAN due to excessive computational and band-
width requirements [4]. CAN frames hold at most 8 bytes
of payload and even the up to 64 bytes of the CAN-FD
extension are insufficient to support asymmetric cryptog-
raphy. An alternative for source authentication in multi-
cast communication relying on more resource-conscious
symmetric cryptography is TESLA [60]. TESLA takes
advantage of delayed key releases which, however, leads
to verification delays and is thus not applicable to the
safety-critical operation of CAN [4]. To fully protect CAN
against the potentially fatal consequences of a compro-
mised ECU, a multicast source authentication scheme is
needed that only occupies a few bytes per message, yet

Author’s version of a paper accepted for publication in Proceedings of the 10th IEEE European Symposium on Security and Privacy (IEEE EuroS&P).
© 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2.2

1.7

1.2Bu
sL

in
es

[V
]

0.0

3.3

Rx
[V

] stu� bit

0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1 1
arbitration �ags DLCSO

F

0 1 0 1 1 1 1 0
payload

CAN_H
CAN_L

0 1 0 1 0 1 1 1 1 1 1 1 1
CRC EOFACK

Figure 1: To transmit data, CAN uses differential encoding on two wires, CAN H and CAN L. We display a base
format CAN frame with 8 bytes of payload as used to control hunreds of millions of cars every day. Note the gap in
the payload and CRC field for increased readability.

delivers instantaneous source verification.
In this paper, we first address the general lack

of adequate multicast source authentication schemes by
proposing Compact And Instantaneous Bus Authentica-
tion (CAIBA). To the best of our knowledge, CAIBA is
the first multicast source authentication scheme without
verification delay while relying on tag sizes as small as
traditional Message Authentication Codes (MACs) with
the same security strength. CAIBA can cryptographically
protect any network against masquerading attacks as long
as it is possible to place a node that can listen to and
overwrite all communications. In a nutshell, CAIBA in-
troduces a dedicated entity, the so-called authenticator to
the bus which is tasked with modifying a message’s MAC
tag at line rate such that receivers can verify the source
and integrity of a message. Meanwhile, the authenticator
cannot generate valid tags itself.

We show how CAIBA can be integrated into CAN
while offering full backwards compatibility and thus al-
lowing for incremental deployment and operation along-
side legacy CAN. CAIBA could thus be deployed in the
same manner as other extensions to CAN, such as CAN-
FD or the newly standardized CAN-XL. Most importantly,
existing receivers implementing AUTOSAR SecOC [5]
can benefit from CAIBA’s source authentication without
any modifications, as only senders need to support CAIBA.

Contributions. To bring multicast source authentica-
tion to CAN, we make the following contributions:
• We propose CAIBA, a multicast source authentication

scheme specifically designed for bus communication
with short authentication tags and no verification delay.

• We enable the calculation of MAC tags by CAIBA’s
authenticator at line rate by adapting the novel BP-
MAC [75] scheme, whose security is based on AES.

• We design a reactive bit flipping mechanism that en-
ables dynamic overwriting of both recessive and domi-
nant CAN bits after preemptively assessing their states.

• We prototypically integrate CAIBA into CAN on
a software-defined CAN controller [11] and show
backward-compatibility with real ECUs as well as reli-
ability of over 99.99% (similar to standard CAN) even
for bus lengths of 100m and beyond.

2. Background: CAN’s Physical Layer

The CAN bus protocol is the de-facto standard in the
automotive industry and mandatory in the EU for vehicle

diagnostics and nowadays also finds applications in, e.g.,
industrial automation [41]. To realize CAIBA, we need to
dive into some of the less well-known details of CAN’s
physical layer, which we outline in the following.

Signaling. Physically, the CAN bus is based on two
wires, CAN H (CAN high) and CAN L (CAN low),
to which every ECU is connected [29]. At the physical
layer, bits are encoded using a simple non-return-to-zero
(NRZ) scheme via different voltage levels specifying the
following differential coding [31]:

{ 0 (dominant bit) if CAN H − CAN L ≥ 0.9V
1 (recessive bit) if CAN H − CAN L ≤ 0.5V

We exemplify the resulting differential signaling in
Figure 1. The transmitter only actively applies the voltage
difference for dominant bits, while the recessive voltage
levels resulting in a difference are passively created by
resistors within each transceiver. Due to this wired AND
gate (bus lines are recessive only when all transmitters
transmit a recessive bit), dominant bits (0) always over-
write recessive bits (1) [29]. This property is utilized on
the data link layer for arbitration and error handling.

Identifier and Data Frame Format. Two data frame
formats with different identifier (ID) schemes for address-
ing are standardizes [29]. The base frame consists of an
11-bit ID with up to 8 bytes of payload, three control
flags (3 bits), the length field (4 bits), the CRC (16 bits),
and the acknowledgement (ACK) field (2 bits) as shown
in Figure 1. The extended frame format offers a 29-bit ID.
Both data frames are enclosed in a start-of-frame (SOF)
and an end-of-frame (EOF) delimiter, which are signaled
by one dominant and 7 recessive bits, respectively.

Sampling and Synchronization. The fixed duration
for which a single bit is present on the wire is called the
nominal bit time and depends on the used data rate. Within
this bit time, each signal is split into four time segments
that consist of one or more time quanta which are derived
from the ECU’s clock and usually are configurable by a
programmable prescaler [29]. The first segment is exactly
one time quanta long and is used to synchronize the
different ECUs. The second segment compensates for
signal propagation and its length, in combination with the
bit rate, are thus the main contributors to determining the
maximal bus length. The last two segments are chosen
such that the bit sampling, happening between them, is
located as close as possible to 75% of the nominal bit
time [18]. These two segments can also be elongated

or shortened for resynchronization based on continuous
monitoring of the edges of the voltage levels.

Bit Stuffing. With NRZ coding, a certain number of
consecutive bits of equal value leads to an absence of
edges necessary for resynchronization, which is addressed
by bit stuffing. To prevent that more than five identical bits
appear in sequence in a bit stream, an additional bit with
the inverse level is inserted (stuffed) after five identical bits
(cf. Figure 1). Stuff bits are therefore transparently added
and removed during transmission by the transmitting and
receiving CAN controllers.

3. State-of-the-Art on Securing CAN

Historically, the CAN bus protocol offers no protec-
tion against cyberattacks. Recent real-world demonstra-
tions [2], [13], [17], [20], [50], [54], [55], [79] have shown
that this lack of security enables the remote compromise
of entire vehicles. A famous example takes full control of
Tesla Model S by remotely attacking the car’s multimedia
system and propagating from there through the CAN
bus [54]. Consequently, new protection mechanisms are
needed to be prepared for the ever-increasing digitalization
and interconnection of modern cars.

3.1. Threat Model

We consider a threat model that corresponds to that
chosen in the majority of the recent offensive and defen-
sive research on CAN security [6], [8], [13], [20], [46],
[50], [54]–[56], [61], [80]: We assume that an attacker has
either physical access to the bus to implant a malicious
ECU or has compromised an existing ECU, e.g., through
Bluetooth or other connectivity. The attacker then intends
to inject messages beyond those message types needed for
the functionality of the compromised ECU (an implanted
malicious ECU is not supposed to send any messages),
i.e., masquerading as another ECU, to highjack the car.

3.2. Related Work

Research on protecting CAN against malicious ECUs
can be grouped into three categories: intrusion detection
systems (IDSs), covert channels, and cryptographic ap-
proaches. These approaches make certain trade-offs to
achieve alleged security, which result in certain limita-
tions, vulnerabilities, or overhead. We classify the cur-
rent state-of-the-art in protecting CAN according to these
drawbacks as introduced in the following.

Limitations
� Only point-to-point communication is protected,

whereas broadcast communication, i.e., CAN mes-
sages meant for multiple receivers, are not protected.

á Only broadcast messages with few (e.g., < 5) re-
ceivers are protected, where the level of protection
exponentially reduces with the number of receivers.

Î Definitively lost CAN frames lead to desynchroniza-
tions that cannot be recovered from.

$ The protocol deterministically delays message au-
thenticity verification by buffering messages at either
the sender or receiver.

Vulnerabilities
 The physical disconnection of a single ECU (e.g., an

IDS) covertly disables all protection mechanisms in
a way that is unnoticeable by any other ECU.

4 An attacker that compromises a single CAN ECU
can subsequently masquerade as other ECUs, e.g.,
because all ECUs share a group key. Needing to
compromise a dedicated security node (e.g., IDSs)
is considered more secure, as those offer no outside
connectivity and should be temper-resilient.

» An attacker can intercept a frame and use the infor-
mation gained to impersonate another device, e.g., by
replaying the frame at a later time. Some approaches
may only enable the injection of malicious frames
shortly after the original intercepted frame.

J The detection of malicious messages only happens
retroactively after messages have been processed and
potentially caused significant harm.

Overhead
õ The scheme needs excessive storage overhead, e.g.,

to store a secret key for each other ECU.
% The scheme requires some additional communication

overhead, either by reserving some space in each
frame or even transmitting additional CAN frames.

Ý The transmission of CAN frames is delayed or pri-
oritization is not fully adhered to.

We consolidate our analysis of the state-of-the-art on
protecting CAN in Table 1. Our classification is par-
tially based on a recent survey by Lotto et al. [46] on
weaknesses in CAN authentication protocols. For the five
proposals classified as secure by Lotto et al. and seven
proposals not considered in their survey, we present a
detailed analysis in Appendix A to substantiate our clas-
sification. In the following, we give an overview of the
three categories of CAN protection mechanisms.

IDSs add a dedicated device to the network that moni-
tors the physical characteristics and behavior of all ECUs
to detect imposters. This monitoring can be based on
voltage levels [15], [16], [19], [36], message timings [14],
[53], [64], [66], [69], [70], [76], [81], signal characteris-
tics [35], [45], [53], or device behavior [44], [52]. All
methods have in common that the IDS device can be
disrupted to covertly disable security without this being
noticed . Moreover, IDSs often only detect malicious
message flows rather than achieving single-message detec-
tion, such that timely reactions, e.g., discarding messages,
are hardly possible J [68]. Finally, IDSs have no perfect
detection performance, i.e., malicious messages may not
get recognized (false negative) or genuine traffic falsely
gets flagged (false positive). Even low false positive rates
can have detrimental effects if acted upon, given the
amount of genuine CAN messages being constantly sent.
On top, recent research shows how sophisticated attacks
can also deliberately evade IDSs in CAN [8], [65]. Over-
all, we conclude that IDS may be useful, but should not
be the only line of defense due to their limitations.

A second class of CAN security approaches relies
on covert channels to achieve message authentication.
These covert channels can be created through a high-
frequency signal interlaced with regular messages [24],

Limitation Vulnerability Overhead

Protocol Year � á Î $ 4 » J õ % Ý

IDSs [14]–[16], [19], [35], [36], [44], [45],
[52], [53], [64], [66], [69], [70], [76], [81]

2016-
2023 - - - - ◆ ◇ - ◇ - - -

C
ov

er
t

C
ha

nn
el

s

CANTO [24] 2020 - - - - - ◆ - - - - ◆

Watermarking [49] 2022 - - - - - ◆ - - - - -
ZBCAN [68] 2023 - - - ◇ ◆ - ◇ - - - ◇

CAN-MM [57] 2024 - - - - - ◆ - - - - -

C
ry

pt
og

ra
ph

ic
A

pp
ro

ac
he

s

AUTOSAR SecOC [5] 2020 - - - - - ◆ - - - ◇ -
CANAuth [74] 2011 - - - - - ◆ - - ◆ ◇ -
Car2X [67] 2011 - - - ◆ - - ◆ - ◇ ◆ -
LiBrA-CAN [23] 2012 - ◆ - ◆ - ◇ - - - ◆ -
LinAuth [43] 2012 - ◆ - - - - - - ◆ ◆ -
LCAP [26] 2012 - - - - - - ◆ - ◆ ◆ -
CaCAN [39] 2014 - - ◆ - ◆ ◇ - - - ◇ -
Woo-Auth [80] 2014 - - ◆ ◇ - ◆ - - ◇ ◇ -
VeCure [77] 2014 - - ◆ ◇ - ◆ - - ◆ ◆ -
LeiA [63] 2016 - - - ◆ - ◆ - - ◆ ◆ -
vatiCAN [56] 2016 - - ◇ ◆ - ◆ ◇ - ◇ ◇ -
VulCAN [73] 2017 - - - ◆ - ◆ - - ◆ ◆ -
TOUCAN [6] 2019 - - - - - ◆ - - - ◇ -
LEAP [47] 2019 ◆ - - - - - - - ◆ ◇ -
CAN-TORO [25] 2020 - - - - - ◆ ◇ - ◆ - -
MAuth-CAN [32] 2020 - - ◇ ◆ ◆ ◇ - - - ◇ -
AuthentiCAN [48] 2020 ◆ - - - - - - - ◆ ◆ -
S2-CAN [61] 2021 - - - - - ◆ - - - ◇ -
CAIBA 2025 - - - - - - - - - ◇ -

Limitation: � no broadcasting support á limited scalability Î no resynchronization $ delayed verification
Vulnerability: covertly disconnected device 4 masquerading by other ECU » frame interception J delayed alarms
Overhead: õ storage overhead % communication overhead Ý delayed transmission

◆ full ◇ partial

TABLE 1: Current proposals to protect CAN traffic expose weaknesses that make them either not deployable in cars
(e.g., scalability limitations) or offer attack vectors to malicious actors (e.g., no protection against masquerading).

[49], [57], which however requires dedicated transceiver
hardware for decoding and still does not provide source
authentication 4. ZBCAN [68], on the other hand, pro-
poses a unique inter-frame spacings for each sender, only
known to the sender and a central authority. In case of
anomalies, the central authority jams the suspicious frame.
However, in ZBCAN, it is neither detectable that the
central authority is covertly disconnected nor is the
protocol secure against bit modification attacks [40] as it
only verifies that the sender intended to send at a given
time but not the content of the message ». Moreover,
ZBCAN modifies CAN’s prioritization scheme which can
lead to a significant delay of up to 25ms $.

Finally, cryptographic approaches rely on the integra-
tion of integrity-protecting tags, usually MACs, into data
frames. These tags can be transmitted e.g., as a portion of
the payload [5], as a substitution for the cyclic redundancy
check (CRC) checksum [80], as part of the CAN ID [25],
or in an additional frame [56]. A prominent example is the
AUTOSAR SecOC standard [5] that uses part of the pay-
load, e.g., 28 bit, for the transmission of integrity protec-
tion. Like AUTOSAR SecOC, most of these approaches
rely on group keys to compute integrity tags. The resulting
lack of source authentication means that compromised
ECUs are not restricted from simply impersonating other
devices 4. The few exceptions split the limited space for
integrity protection among all receivers á [23], [43], do
not support broadcast communication � [47], [48], rely

on a covertly disconnectable authenticator [32], [39],
or are vulnerable to frame interceptions » [26], [67].

Concluding, we observe that all current proposal to
protect CAN suffer from drawbacks that either make them
unsuitable for in-vehicle communication or make them
vulnerable to attacks. With CAIBA, we thus aim to design
a protocol that suffers none of these drawbacks.

4. Source Authentication with CAIBA

For traditional point-to-point communication, source
authentication and integrity protection is realized by ap-
pending an integrity-protecting authentication tag (i.e., a
MAC) to each message. This tag is computed with the help
of a secret key shared by sender and receiver, and verified
by the receiver upon reception of a message. However,
in a broadcasting domain like CAN, such authentication
tags do not provide source authentication: A receiver
cannot differentiate if a message stems from the alleged
sender or if it has been spoofed by another member in
the group of receivers who has access to the secret key.
Hence, a compromised device could masquerade as one
or multiple other devices. To protect the CAN bus against
masquerading attacks, an effective source authentication
protocol for multicast communication is thus required.
In the following, we first investigate existing proposals
to achieve source authentication and argue why they are

sender j

t = σksource
j

(m)
︸ ︷︷ ︸

ts

⊕σkgroup(m)︸ ︷︷ ︸
ti

authenticator

ti = t ⊕ σksource
j

(m)
︸ ︷︷ ︸

ts

receiver

ti
?
= σkgroup(m)

receiver

ti
?
= σkgroup(m)

. . .

m||t
m||ti m||ti

m
⊕ts

Figure 2: CAIBA employs an integrity-protecting tag t
i

and a source-authenticating tag t
s that are computed by

the MAC function σ using the source and group keys,
k

source
j and k

group, and are XORed by the sender to pro-
tect a message m. During transmission, the authenticator
computes t

s and overwrites the message such that only t
i

remains. The integrity-protecting tag t
i that is read by the

receivers can then be verified with a conventional group
key without knowledge of the source key.

not suitable for CAN. Afterward, we propose our novel
scheme, CAIBA, that addresses limitations of prior work.

4.1. The Current State-of-the-Art

Source authentication for multicast communication re-
lies on asymmetry between senders and receivers or across
receivers [12]. The most widespread form of asymmetry
are digital signatures, where receivers only have keys to
verify messages, but not authenticate them. The main
concern for this type of cryptographic asymmetry is the
size of signatures (upwards of 32 bytes) that cannot fit
into CAN frames. The TESLA protocol [59], [60], on
the other hand, relies on time asymmetry for multicast
source authentication. Here, keys are revealed after they
have expired and linked to the sender (e.g., via a hash-
chain), such that receivers can verify the authenticity of
buffered messages retroactively. Time asymmetry does
however introduce significant delays and some additional
bandwidth overhead (e.g., for key revelation) which are
not acceptable in in-vehicular communication. The final
type of multicast source authentication schemes relies on
information asymmetry, where receivers can only verify
parts of the multiplexed source-verifying information [10],
[58]. Thus, each receiver has reduced certainty of a mes-
sage’s authenticity, with the benefit that no single receiver
can generate an authentication tag that is accepted by
all receivers. This, however comes at the cost of longer
authentication data (compared to simple MAC schemes),
which grows with the number of receivers. To conclude,
current multicast source authentication schemes are in-
applicable to CAN: they either incur verification delay or
require excessive message overhead (in CAN, payload and
authentication tag must fit into 8 bytes).

4.2. General Idea of CAIBA

To enable multicast source authentication for CAN,
we devise the novel CAIBA scheme. To understand the
idea behind CAIBA, consider the following hypothetic
scenario. A CAN message is protected by two authenti-
cation tags, the integrity-protecting tag t

i and the source-
authenticating tag t

s. These tags are computed with tra-

ditional MAC schemes, where the tag verification cor-
responds to the re-computation of the tag based on the
received data and comparison to the received tag. The
integrity-protecting tag t

i is generated using a group key
k

group and verified by each receiver. Like intrusion de-
tection systems and other proposals to retrofit integrity
protection into CAN [23], [39], [68], CAIBA relies on one
or multiple dedicated security nodes, the authenticator(s).
The source-authenticating tag t

s is only verifiable by this
authenticator that shares a symmetric key k

source
j with each

sender j, but does not know the group key. In this hypo-
thetic scenario, the authenticator also controls a virtual
side-channel to securely notify each receiver whether or
not the source of a message has been correctly verified.

Obviously, this basic construction occupies additional
space (to send two tags instead of one) and time (to wait
for the confirmation of the source-authenticating tag t

s

verification to receivers). However, in CAIBA, we only
transmit a single tag and use an implicit side-channel as
shown in Figure 2: The actual transmitted tag t is the ag-
gregation of both tags, i.e., t = t

i⊕ t
s.1 The authenticator

no longer verifies t
s but only recomputes t

s based on the
received payload and the alleged sender. The authenticator
then XORs the tag t with t

s as the bits are transmitted
over the bus. When the ordinary receivers in CAN sample
the bus, they will then read and verify t

i. If, and only
if, neither the data nor the tag has been manipulated
beyond the authenticator’s actions, the receiver’s integrity
verification can be successful. In this way, no explicit side-
channel communication is needed and only the space of a
single authentication tag is occupied in the CAN payload.

4.3. Requirements to Deploy CAIBA

Since CAIBA introduces no verification delay or mes-
sage overhead compared to an ordinary group key based
authentication, our scheme is especially attractive for the
CAN bus. However, as other solutions for multicast source
authentication, CAIBA can only be applied if certain
requirements are fulfilled. Specifically, the deployment
scenario must fulfill certain requirements.

No Direct Communication. Entities must not be
able to directly communicate with each other without
the authenticator also overhearing these transmissions.
Otherwise, a malicious group member could only append
the integrity-protecting tag t

i and a receiver would have no
way of knowing whether the message really stems from
the alleged transmitter. Communication buses like CAN
fulfill this requirement by design.

Ability to Overwrite Messages. The authenticator
must be able to reliably overwrite messages at line rate.
We later show how this is possible for CAN (cf. Sec-
tion 5.3). For other communication protocols, it still has
to be investigated how to unlock such capabilities.

No Authenticator Collusion. There must be no col-
lusion between the authenticator and any other entity in
CAIBA. Otherwise, the entity could transmit a message
without a source-authenticating tag and the colluding au-
thenticator would simply ignore it. Practical demonstra-
tions have shown how to compromise individual CAN

1. The aggregation with XOR is provably secure and t can be verified
by recomputing t

i and t
s individually [7].

ECUs due to external connectivity. However, additionally
compromising an authenticator with no external connec-
tivity that can rely on temper-resilient hardware would
require a significantly more advanced attack.

4.4. Security Discussion

As we proof in Appendix B, CAIBA provides the
same security as a traditional MAC of the given length
used to protect an end-to-end connection between sender
and receiver. Considering an exemplary 24 bit tag, an
attacker thus has a mere 1/224 (∼1 in 17 million) chance
to guess a valid tag. This security level is achieved because
the aggregation of the source-authenticating tag and the
integrity-protecting tag achieves the same security level
as the individual tags [33]. The difference is that the
aggregated tag can only be verified by combining the
knowledge to verify both tags individually. As only the
sender knows the keys for both tags, a valid tag authenti-
cates the source of a message to each receiver.

One security risk for CAIBA is that an attacker phys-
ically disconnects the authenticator from the network.
With other security solutions, e.g., IDSs in CAN, such
attacks are often not detectable, and the attacker would
gain complete control over the bus. In contrast, CAIBA
quickly detects that the authenticator is disconnected and
can take corrective actions before significant damage can
be caused. Ideally, redundant authenticators are available,
which can quickly take over upon request by the sender
that noticed an inactive authenticator. Alternatively, oper-
ators can be notified about the inoperational authenticator
and respond similarly as to an alarm by an IDS. Luckily,
an authenticator’s physical disconnection most likely oc-
curs while the car is stationary, such that a car could be
prevented from moving, at least until the driver is notified
about the risk. If the authenticator nonetheless disconnects
while the car is moving, CAIBA could fall back to insecure
CAN, advise the driver to stop the car, and potentially the
speed and acceleration of the car could be limited.

Finally, an attacker could compromise the authentica-
tor directly, e.g., through a supply chain attack. However,
even a compromised authenticator cannot spoof messages
as it cannot compute integrity-protecting tags. To success-
fully spoof a message, an attacker needs to additionally
compromise a genuine receiver within the corresponding
multicast group. Thus, CAIBA overall provides strong
protection against masquerading attacks and enables the
detection of a disconnected authenticator.

5. Integrating CAIBA into the CAN Bus

After presenting the idea of CAIBA in a general and
abstract fashion, we now discuss the technical details of
integrating CAIBA into CAN. Here, we are faced with
two main challenges. First, the authenticator must be able
to quickly compute the source-authenticating tag t

s as
the first bit of the overwritten tag follows immediately
after the last bit of the protected payload. Secondly, the
authenticator must be able to dynamically and precisely
flip individual bits. In the following, we will successively
introduce the design of all entities, i.e., the transmitter, the
authenticator, and the receiver. Before, we shortly address

the general challenges of deploying CAN extensions such
as CAIBA. Concerning key distribution, we assume that
each ECU and the authenticator are initially configured
with exactly those keys that they require, i.e., each ECUs
shares a unique key with the authenticator, and all ECUs
know relevant group keys2.

5.1. Deployment Considerations

CAN extensions such as CAN-FD for higher band-
width have in the past been successfully deployed by
ensuring interoperability with legacy CAN devices. Thus,
while ECUs do not necessarily need to be fully compliant
with the existing CAN standard, any changes must by
compatible with the existing standard, such that CAN
ECUs and CAIBA ECUs can operate on the same network.
Only then can an incremental deployment of CAIBA be
possible, as the sudden adoption of a new standard by all
actors in, e.g., a car manufacturing supply chain, is not
realistic. The easiest solution to achieve such interoper-
ability is if all changes are restricted to the inner operation
of an individual ECU, while the signals written to the bus
are fully compliant to the CAN standard at all times.

Regarding the actual integration and commercializa-
tion of Caiba into e.g., cars, ECU and car manufacturers
do not have to change much in their operations. Nowa-
days, CAN controllers are mostly integrated as Semicon-
ductor Intellectual Property (SIP) cores (e.g., [1], [3])
Once an SIP core implements Caiba, ECU manufactur-
ers can integrate them into newly manufactured chips.
Then, car manufactures need to add an authenticator to
their bus and configure it for CAIBA-supporting ECUs to
talk securely if all receivers interpreting a specific frame
implement the AUTOSAR SecOC standard.

5.2. Transmitter Design

Transmitters of CAN frames only require minor
changes to support CAIBA. These changes, however, re-
quire little additional space on the die of the ECU chip.

The main change between a transmitter supporting the
AUTOSAR SecOC standard and a transmitter supporting
CAIBA is the computation of two authentication tags
instead of one over the concatenated CAN ID and payload.
For the source-authenticating tag t

s, we rely on BP-MAC,
a novel MAC scheme optimized for short messages of
only a few bytes [75]. The integrity-protecting tag t

i can
be computed by any suitable MAC scheme, which also
allows the deployment of CAIBA without any modifica-
tions to the receivers, as they only receive and verify this
tag. Once both tags are computed, the transmitter simply
aggregates them with XOR for the transmitted tag t and
integrates it into the payload of the CAN frame. We use
24 bits reserved in the payload for the tag and keep track
of a counter for replay protection by appending its 4 least-
significant bits in each frame. The usage of a 24 bits MAC
with the 4 least-significant counter bits corresponds to
SecOC Profile 3 (JASPAR) [5].

Furthermore, the transmitter must be adapted to sup-
port tag overwriting by the authenticator. On the one
hand, the CRC checksum and the placement of stuff bits

2. There maybe only exists a single group key for the entire bus.

in the final received frame must be ensured. Therefore,
the sender computes the checksum and the stuff bits
placement based on the expected final frame, after the
authenticator’s modification, and not based on the trans-
mitted frame. The authenticator knows when to expect
stuff bits and skips over them. For the particular CAN
controller used for our implementation, this requirement
was naturally fulfilled: The controller listens to the bus
while transmitting its message to detect higher-priority
transmissions and uses this received data for bit stuffing
and CRC computation. To the best of our knowledge, this
behavior is however not required by the standard.

On the other hand, the transceiver must ignore over-
written signals during the transmission phase of the tag.
Otherwise, the transmitted would quickly switch to the
bus-off state and virtually disconnect itself from the bus.
Therefore, we change bit monitoring to listen to the ex-
pected bits after an authenticator overwrote the bits. This
change does not lead to security or reliability problems,
since every unauthorized modification would result in an
invalid tag on the receivers’ side. If errors only increase
during the tag transmission than an ECU can conclude
that the authenticator is faulty or disabled and react ac-
cordingly. This reaction could be the fallback to unsecured
CAN after alerting the network or the switch to on a
backup authenticator.

While CAIBA requires some modifications to CAN
transmitters, it is important to note that the communication
on the bus still remains CAN compliant and interoper-
able. Therefore, CAIBA can coexist with legacy CAN
transmitters as long as the authenticator knows which
communications are CAIBA-protected and which are not.

5.3. Authenticator Design

The authenticator continuously monitors the bus and
notices when the transmitter starts writing to the bus.
Then, it has to (i) identify the transmitter, (ii) compute
the source-authenticating tag t

s over the CAN ID and
the first part of the payload as well as (iii) overwrite the
second part of the payload based on that computed tag. All
of this processing needs to happen concurrently with the
ongoing transmission of the CAN frame. In the following,
we discuss how these three steps are realized in CAIBA.

5.3.1. Source Key Identification. The authenticator first
identifies the alleged source of a frame and whether it
supports CAIBA

3. While CAN uses message identifiers
that should be associated with a unique sender, often
employed standards ensure an easy coupling without a
large lookup table [46]. Thus, the message ID can be
used to identify the unique transmitter of a message. It is
crucial to securely configure which ECU supports CAIBA
during vehicle assembly to thwart downgrade attacks.
After the sender has been decoded by the authenticator, the
transmitter and thus the relevant key k

source
j is available.

5.3.2. Fast In-Line MAC Computation. When a CAIBA
transmitter is identified, the authenticator computes the

3. We assume that the bus is configured according to AUTOSAR
SecOC, i.e., space for authentication tags is reserved and nodes not capa-
ble of performing the integrity verification ignore the tag. Alternatively,
all ECUs must track for which CAN IDs integrity protection is enabled.

source-authenticating tag t
s based on the source authen-

tication key k
source
j , the protected payload, and a nonce (a

8 bytes long counter which is synchronized based on the 4
least-significant bits transmitted with each frame). Consid-
ering CAN’s maximum supported data rate of 1Mbit/s,
the first bit of the tag follows within 1 µs after the last
data bit. Actually, the authenticator needs to compute t

i

in a fraction of this time, as it needs time to overwrite
this first tag bit before it is read by the receiver.

To achieve these speeds while still relying on sound
cryptography, CAIBA uses the BP-MAC [75] scheme with
its unique performance through bit-wise precomputing
tags and enhances it by a custom online computation
algorithm. For now, it is only important that the compu-
tation of the source-authenticating tag t

s can be achieved
with a single XOR operation per read bit, which is fast
enough to be performed even in a fraction of the time
between two CAN signals. Meanwhile, BP-MAC relies
on a Carter-Wegman construction such that it offers the
same guarantees as the underlying MAC scheme, e.g.,
HMAC_SHA256. The authenticator is thus fast enough to
know the source-authenticating tag t

s that it must XOR
with the transmitted tag t as soon as its first bit is written
to the bus. The details of the BP-MAC tag computation
in CAIBA are covered in Section 6.

5.3.3. Overwriting CAN Frames. Once the authenticator
has read the source-authenticating tag t

s, it must XOR this
value with the transmitted tag, i.e., whenever a bit in t

s

is set, the signal on the bus must be inverted. For the
signal-flipping procedure, the authenticator first needs to
receive the transmitted signal. By sampling early in the
nominal bit time, the authenticator can read the original
signal while still having time to react. This early sampling
is similar to the process how CAN-FD achieves higher
bitrates than CAN. It is possible because of relatively
large tolerances for rise and propagation times in the CAN
standard, which are designed for the worst case where the
transmitter and receiver are located as far apart as possible.
We suggest that the authenticator is placed centrally for
bus length close to the maximum supported for a given
bitrate, such that its distance from the transmitter is at
most half of what is compensated for by CAN (even less
if multiple authenticators are used). If the bit on the bus
is recessive, the authenticator can simply overwrite it with
a dominant bit. However, the opposite situation is not
trivial, as dominant bits always overwrite recessive ones.
For this purpose, we take advantage of the limited output
current of CAN transceivers by simply connecting an
additional inverted transceiver in our Reactive Bit Flipping
(RBF) approach, which is explained in more detail in
Section 7. With RBF, the authenticator can ultimately
XOR the transmitted tag t with the computed tag t

s, such
that receivers sense the integrity-protecting tag t

i when
sampling the bus at standard sampling points.

5.4. No Need to Adapt Receivers

The design of CAIBA requires no software or hard-
ware changes at the receiver if the AUTOSAR SecOC
standard is already supported since MACs are already
implemented. The modifications of CAIBA only overlay
the traditionally transmitted integrity-protecting tag t

i with

the source-authenticating tag t
s. However, this change is

transparent for an ECU which samples the bus as defined
by the CANopen standard [18]. Thus, receivers do not
need to be changed or replaced to support CAIBA which
enables a smooth and iterative deployment of CAIBA.

Once a car manufacturer integrates an authentica-
tor module, all CAN transmitters can decide to employ
CAIBA. Each sending ECUs employing CAIBA needs to
share a secret key k

source
j with the authenticator, which

will, in most cases, be statically configured by the man-
ufacturer. Afterward, the authenticator starts overwriting
the authentication tag according to CAIBA’s design. A
receiver can then process CAN frames exactly as before. If
a message is tampered with, either through manipulations
during transmission or by being sent from an unauthentic
source, the verification by the receiver fails and it pro-
cesses this anomaly accordingly.

5.5. Error Handling and Recovery

Failed CAN transmissions could result from de-
synchronized nonce counters of the sender, authenticator,
and receiver. If this were the case, no future message
would be verifiable. However, if CAN transmissions are
not received by all ECUs, e.g., due to an error in the
CRC checksum at a single ECU, this is announced with a
distinct error frame. In that case, the authenticator resets
its counter and the sender retransmits the frame with the
original MAC. The receiver would not have processed the
MAC as the error frame interrupts the transmission, such
that no action is required.

Due to the transmission of the four least-significant
bits of the nonce in each frame, it is unlikely that a node
gets out of sync. To get to such a state, one ECU must
miss an error frame or a frame must be discarded due
to multiple failed retransmissions, at least 16 times in a
row from the same origin. If such an unlikely scenario
were to occur, it most likely stems from a malfunctioning
ECU or an active denial of service attack, both of which
CAIBA cannot protect against. Still, to ensure the best
possible resilience, CAIBA implements a distinct recovery
mechanism for such cases. If a receiving node fails to
verify the tag of five consecutive frames, it requests a
counter reset through a specific CAN ID.

Once this request is received by the sending ECU,
it updates the two counters for the integrity-protecting
and source-authenticating tags. Therefore, the value in the
n most-significant bytes of the counter is incremented,
where n represents the number of payload bytes in a
CAIBA frame. The less-significant bytes are meanwhile
reset to zero. The sender then first sends the most sig-
nificant bytes of the counter for the source-authenticating
tags to the authenticator. This CAN frame is protected by
a regular MAC (sender and authenticator share a secret
key) and the frame must only be authenticated by this
one receiver. Then, the updated counter for the integrity-
protecting tag is broadcasted by a CAIBA-authenticated
CAN frame to all receivers. This procedure guarantees
that no nonce is reused (for authentication by the sender),
while even for counters that drifted apart significantly,
they are reset to the same value.

tdefault ⊕
if b0 = 1

t0bitflip ⊕
if b1 = 1

t1bitflip ⊕ . . .⊕
if bn = 1

tnbitflip ⊕ tmask

Figure 3: A BP-MAC tag is computed by XORing a
default tag tdefault, a masking tag tmask, and a bitflip tbitflip
for each bit bi in a message that is set to 1. All of these
individual tags can be computed ahead of time, only the
XOR needs to be performed once the message is known.

5.6. Reliability with Multiple Authenticators

A single authenticator is a potential weakness of
CAIBA’s design. Such a single point of failure can inter-
fere with high-reliability demands of applications relying
on CAN. While an inactive or misbehaving authenticator
is quickly identified by the sending controllers (cf. Sec-
tion 5.2), downgrading to unprotected communication
should always be avoided.

Therefore, we propose to operate CAIBA with multiple
authenticators. However, if many authenticators overwrite
the same bit simultaneously, the physical signal is soon
disturbed and reliable sensing is unlikely, especially due
to different propagation delays. Instead, authenticators
should be distributed along the bus and only the closest
authenticator takes care of overwriting a signal. Which
authenticator is responsible for which ECU can be pre-
configured, as ECUs are usually stationary. Such a multi-
authenticator deployment has the advantage that the sender
is always close to its dedicated authenticator, such that
propagation delays are reduced. If an authenticator is
malfunctioning, it or a noticing ECU, can inform the next
authenticator in line to take over. Thus, multiple authen-
ticators increase reliability by (1) reducing the physical
distance between senders and authenticators, and (2) of-
fering fallback authenticators in case of malfunctions.

6. Fast MAC Scheme

For CAIBA, we adapt the BP-MAC [75] scheme to
allow the online computation of the final tag that can
keep up with the speed requirements of the authenticator.
We first briefly recapitulate BP-MAC in Section 6.1 (the
original paper [75] provides more details), then show how
we achieve online tag computability in Section 6.2 before
discussing its integration into CAIBA in Section 6.3.

6.1. A Primer on BP-MAC

BP-MAC [75] is based on the Carter-Wegman MAC
construction and optimized for short messages that are
only a few bytes long. An authentication tag is thus com-
posed of a digest computed by a universal hash function
over the message generated with an AES key k1 and
a masking tag in the form of a pseudo-random num-
ber generated with a distinct AES key k2. The masking
tag is responsible for hiding the digest, as the MAC is
only secure as long as no attacker learns any of these
digests. For BP-MAC’s universal hash function, each bit
is processed individually which allows the preprocessing
of these results with linear space overhead. Concretely,
the tag computation in BP-MAC works as shown in

bitflip tags
...

...

i− 2

i− 1

i

i+ 1

i+ 2

4df1...

d5f6...

21a0...

0320...

359e...

blinding tags

...

90a8...

ab93...

508c...

0a9a...

ec4b...

3539...

. . . 000

. . . 001

. . . 010

. . . 011

. . . 100

. . . 101

final tag

⊕

bi−1. . . bi bi+1 bi+2 . . . n0 n1 n2

message nonce

type?value?

do nothing

message bit

0

1
nonce

. . . ? ? ?
nonce bit

Figure 4: BP-MAC tags can be computed incrementally
with each received bit, such that a single XOR operation
suffices to compute the final tag once the final bit is read.

Figure 3. In advance, a default tag tdefault is computed
by XORing the bit tags of a message only composed of
zeros. Here, bit tags are the AES-encrypted bit index and
value, i.e., the bit tag ti of the i-th bit bi is computed
as AESk(i, bi). Then, depending on where bits in the
actual authenticated message are one, the tdefault is XORed
with bitflip tags, i.e., tibitflip = AESk1

(i, 0)⊕ AESk1
(i, 1).

Finally, the resulting tag is masked with a masking tag
that is computed by AES-encrypting a counter that is
incremented with each message, i.e., AESk2

(counter).
The counter for the masking tags is known in advance
and can thus be precomputed.

6.2. Online BP-MAC Computations

We specifically choose the BP-MAC scheme for the
source-authenticating tag in CAIBA since we can modify
it for online tag computation. Only with this online tag
computation, the authenticator can operate fast enough to
be ready to overwrite the next bit. This adapted process
to compute BP-MAC tags is illustrated in Figure 4.

The final tag variable is initialized with the default tag
for a message composed only of zeros. As we observe in
the timeline at the bottom, data is then received bit by bit,
and currently the bit bi of the message is processed. Its
value is checked and if the bit is set, the corresponding
bitflip tag is XORed with the final tag. These bitflip tags
are precomputed and stored alongside the key for the
corresponding transmission source. Nonce bits are either
explicitly transmitted or implicitly tracked by the sender
and receiver. If transmitted, the (least-significant) nonce
bits can be received and processed before or after the
message bits. In Figure 4, we show an example where the
last three bits n0, n1, and n2 are updated with the trans-
mission, while the rest of the expected nonce is tracked
implicitly. This update process allows self-synchronization
in case of a short burst of failed transmissions. Once the
complete nonce is known, the corresponding masking tag
is selected and XORed with the final tag. If the message
and nonce bits are processed, the order of which actually
does not matter, the final tag is known. In either order,
the process after the last bit is received is composed

of a simple conditional check and at most one XOR
operation. Thus, the authenticator can compute source-
authenticating tags over the payload at line rate and be
ready to potentially flip the first bit of the transmitted tag.

6.3. Integration into the CAIBA Authenticator

In CAIBA, we use 24 bit tags and 4 bit for nonce
synchronization, which corresponds to SecOC Profile
3 (JASPAR) in the AUTOSAR standard [5]. The blind-
ing tag in BP-MAC is computed by AES encrypting a
counter. In CAIBA, we take advantage of the fact that only
each fifth blinding tag requires an invocation of the AES
algorithm. A 16 byte encrypted AES block is divided into
five blinding tags of 3 bytes (1 byte is discarded). Thus,
the counter is only encrypted if it is dividable by five,
otherwise, the already computed blinding tags are used in
order. This encryption of an AES block happens whenever
the message using the last blinding tag is transmitted. If
the message frequency is too high for the authenticator’s
processor, the AES algorithms can also be computed
iteratively between every single message.

7. CAIBA’s Overwriting Mechanism

Altering CAN messages during their transmission is
one key function of the authenticator in CAIBA. Techni-
cally, it requires a modification of the voltage levels on
the bus lines and has to be timed precisely to not disturb
ongoing transmissions and to ensure the desired message
is received by other participants. While the authenticator
itself does not verify the transmitted tag t (t = t

i ⊕ t
s),

it calculates the source-authenticating tag t
s based on the

payload, the nonce, and the known key k
source
j . By then

applying the XOR operation on t and t
s (recomputed

based on the received data) again within the transmis-
sion, the resulting tag t

i is read by the other devices of
the bus. Recently, the feasibility of real-time perfect bit
modification attacks, where the original bus state is over-
written with a static value, has been demonstrated [40].
However, neither t nor t

i is known to the authenticator
in advance, such that the authenticator has to carry out
these bit modification operation reactively and in a bit-
wise manner. Specifically, the authenticator must write the
inverse bit signal of what was originally written to the
bus whenever a bit in t

i is set. In the following, we will
describe the process of overwriting the authentication tag
of a message in Section 7.1. With RBF, we then introduce
a novel technique to reactively change the physical CAN
signals on-the-fly in Section 7.2. Even though we use this
technique exclusively for the CAIBA authenticator, it is
worth to emphasize that RBF can be used more generally,
for both defensive and offensive purposes.

7.1. Physical Signal Modification

Flipping a single bit signal requires modifying voltage
levels on the bus lines. Overwriting a recessive bit to a
dominant one is a core functionality of CAN to realize
arbitration. Hence, the authenticator can use the normal
process to write a dominant bit and thus overwrite the
recessive bit of another ECU. However, if the transmitter

2.2

1.7

1.2

Bu
sL

in
es

[V
]

CAN_H CAN_L ECU sampling

−1
0
1

Δ
V

0.0

3.3

Rx
[V

]

(a) Unmodified transmission: 01010011.

2.2

1.7

1.2

Bu
sL

in
es

[V
]

CAN_H CAN_L ECU sampling

−1
0
1

Δ
V

0.0

3.3

Rx
[V

]

(b) Original transmission 10101100 stat-
ically overwritten by 01010011.

2.2

1.7

1.2

Bu
sL

in
es

[V
]

CAN_H CAN_L ECU sampling auth. sampling

−1
0
1

Δ
V

0.0

3.3

Rx
[V

]

(c) Reactively flipped original transmission
of 10101100 to 01010011.

Figure 5: Recording of the bus lines and transceiver’s RX output during transmissions including sampling points.

Receiver Driver
Control

GNDVCC

CAN_LCAN_H

LPC1768

CAN_H

CAN_L

Receiver Driver
Control

GNDVCC

CAN_LCAN_H

TxDRxD

Authenticator Node Controller

Inverse
Transceiver

TxDRxD
Regular
Transceiver

Figure 6: The authenticator node controls an additional
CAN transceiver, that is inversely connected to the bus
lines to erase voltage differences between the bus lines.

sends a dominant bit, the authenticator must actively drive
the voltages on the bus lines to the recessive state to
overwrite with a recessive bit. To achieve this overwriting,
the applied voltages of the transmitter have to be reverted
by sourcing CAN L while sinking CAN H to ground.
This inverse connection, in relation to the transmitting
transceiver, enables the current flow from the transceiver
through the terminating resistors to be diverted off the
bus, which reduces the measurable voltage drop of domi-
nant signals. However, as CAN always operates based on
the differential voltage, it is enough to keep the voltage
drop below 0.5V to make sure it is read as a recessive
state [31]. Thus, additional components, which effectively
erase the voltage difference would typically need to have
an internal impedance that is significantly lower than the
effective impedance of both terminating resistors.

We could build such a device from discrete compo-
nents. However, ordinary CAN transceivers often already
offer the inverted functionality. A common internal struc-
ture of the transceiver contains two transistors to pull
CAN H to the supply voltage and CAN L to ground [22].
We can thus connect an additional CAN transceiver with
inverted bus lines to the authenticator, as shown in Fig-
ure 6. Then, we use the transistors to reduce the voltage
difference when transmitting an apparent zero bit at this
transceiver. As this would typically result in a dominant
transmission, it enables a current flow through the inter-
nal transistors, which sinks the current from CAN H to
ground and sources CAN L from the supply voltage. This
changes the bus voltage to the original, recessive state as
can be seen in Figure 5a and b.

7.2. Reactive Bit Flipping

The process to flip a bit depends on the current bit
of the source-authenticating tag t

s and the transmitted
authentication tag t. While t

s is known, the authenticator,
since not in possession of kgroup, cannot compute a single
bit of ti before the according bit of t has been transmitted
by the original transmitter. However, calculating this bit
after sampling the bus would result in a failing verifica-
tion, since the receiver would already expect the authenti-
cated corresponding bit of ti. Hence, signal modifications,
as described in the previous Section 7.1, requires a priori
knowledge about the current bit signal.

Our proposed RBF technique makes the overwriting
mechanism of the authenticator reactive, i.e., the authen-
ticator simultaneously reads and reacts to the current state
of the bus within the transmission of the same bit. To be
able to read the original signal, we modify the transmis-
sion only between the third and the last time quantum of
each bit signal. The first two time quanta are used to let
the bus enter the state of the originally transmitted bit.
At the end of the second time quantum, the authenticator
samples the bus and reads the latest transmitted bit of
t (cf. Figure 5c). We can expect the bus to be collision
free at this time, because it was reserved to the sender
during the arbitration phase of the frame. Furthermore, we
can assume that the signal has already propagated via the
bus due to an approximately constant propagation delay
and shift of the bit timings between ECUs. The sampled
signal is then used for calculating the corresponding bit of
t
i and to select the suitable CAN transceiver (i.e., regular

or inverse (cf. Figure 6) for a possible bit alternation.
In the remaining time quanta, the bus is forced into

the desired state by the authenticator. After 75% of the
nominal bit time has passed, ECUs sample the bus [18]
and will read the authenticated bit of ti.

7.2.1. Bit Synchronization Conflict. Changing the volt-
age levels on the bus within a bit time can conflict
with CAN’s edge-oriented synchronization. Due to RBF,
bits are overwritten in the third time quantum which
introduces additional edges. Concretely, a CAN controller
synchronizes based on the edge when changing from a
recessive state to a dominant state by prolonging the
expected duration of the bit by the preconfigured Syn-
chronization Jump Width (SJW) [29]. The SJW is 1 to 4

time quanta long and defines the maximum time by which
a controller extends/shortens a bit, with a larger number
generally chosen to improve robustness. However, altering
the transmitted recessive bit to dominant will cause an
edge in the third time quantum. Exactly if the j-th bit is
read recessive (tij = 1) and is followed by a dominant
bit that is flipped (tj+1 = 1 and t

i
j+1 = 0), the first de-

tected edge occurs when the authenticator changes a signal
from recessive to dominant, and all nodes resynchronize
their bit time by this delayed edge. We compensate for
the time shift by increasing the current bit time at the
authenticator by two time quanta. The increased time the
authenticator overwrites the transmission ensures that the
bit value remains constant until all nodes have sampled
the bus. Furthermore, we avoid additional disturbances
to the bus, caused by multiple signal changes in a short
period. Thus, CAIBA’s authenticator compensates for the
synchronization procedure embedded into all CAN ECUs.

7.2.2. Bit Stuffing Conflict. Most parts of a CAN frame
are affected by bit stuffing, including the authentication
tag t within the payload. Changing single bits in t can
require additional stuff bits or make existing ones obso-
lete. Both cases could lead to an incorrect authentication
tag received by other nodes or an incorrect length of
the data frame and would interrupt the transmission. As
stated in Section 5.2, we expect the sender to place stuff
bits according to the modified bit stream that is received.
To prevent overwriting stuff bits in t, the authenticator
pauses the bit modification for one bit time whenever
it expects a stuff bit from the sender. The position of
a stuff bit is determined based on the last five regular
sampling points. Although bit modification is paused, the
authenticator samples the bus during the expected stuff bit
to detect stuff errors or error frames.

8. Evaluation

We presented CAIBA as an innovative source authen-
tication scheme to protect CAN without requiring signif-
icant changes to existing systems. In the following, we
present a proof-of-concept implementation and show the
general applicability of CAIBA. We start with the introduc-
tion of our evaluation setup and limitations in Section 8.1.
In Section 8.2, we compare the reliability of our scheme
regarding CAIBA-protected traffic. CAIBA’s compatibility
with legacy CAN devices is demonstrated in Section 8.3,
its processing overhead investigated in Section 8.4, and
potential bus length restrictions discussed in Section 8.5.
Finally, we take a look at potential adverse long-term
effects on the employed hardware in Section 8.6.

8.1. Evaluation Setup and Limitations

For our proof-of-concept implementation, we set up
a testbed consisting of different ECUs as shown in
Figure 7. To rapidly prototype the necessary modifica-
tions within the CAN controller, we used the software-
defined CAN controller (SDCC) [11] with the recom-
mended NXP LPC1768 microcontroller platform and
TI SN65HVD230 CAN transceivers. Additionally, three
unmodified off-the-shelf CAN controllers were used to

CO4011EVA board

Authenticator Sender

SDCC

Bus

RS485 CAN HAT

Figure 7: Evaluation setup of CAIBA consisting of a
CAIBA-capable transmitter • , three unmodified receivers
•, and a CAIBA authenticator •.

evaluate the backward compatibility of our solution. As
the SDCC is a pure software implementation on a regular
microcontroller without any hardware acceleration, the
maximum bitrate is limited to 40 kbit/s [11]. To show
the general feasibility of CAIBA, this is sufficient.

However, to evaluate CAIBA with higher bitrates, a
hardware- or FPGA-based implementation would be nec-
essary. This is an effort we consider disproportionate to
demonstrate CAIBA’s general feasibility. Instead, our eval-
uation focuses on the practical feasibility at low bitrates,
while we theoretically analyze the effects of higher bi-
trates e.g., w.r.t. to the bus length. However, as commercial
adaptions of CAIBA are expected to be implemented in
hardware, e.g., as SIP cores (cf. Section 5.1), we do
not anticipate any processing limitations even at higher
speeds. For example, the most time-critical aspect is the
final computation of t

s by the authenticator after the last
payload bit has been received, which requires a single
XOR operation of three bytes and can be computed within
a single clock cycle by a hardware-based authenticator.

With a faster hardware prototype, we could validate
that CAIBA and legacy CAN ECUs can coexist on the
same bus in an actual car. However, even then, we could
not easily investigate if receiving ECUs implementing
the AUTOSAR SecOC standard could be retrofitted with
CAIBA’s source authentication because we have no access
to the secret group key used by the car’s ECUs. Conse-
quently, we have to fall back to a physical testbed for our
proof of concept evaluation of CAIBA.

8.2. Reliability

Ideally, CAIBA can enable source authentication to
CAN without impacting its reliability. Therefore, we com-
pare the reliability of CAIBA to a regular CAN deploy-
ment. For data rates varying between 10 and 40 kbit/s, we
sent 100,000 frames with 4 to 8 bytes of payload (incl.
authentication tag) and analyze the ratio of correctly re-
ceived frames at the receiver, including a valid integrity-
protecting tag. To have an equal number of ECUs con-
nected to the bus, and thus have comparable desynchro-
nization potential, we connect an additional listening ECU
for the CAN measurements that does not need the authen-

10 15 20 25 30 35 40
Bandwidth [kbit/s]

99.900

99.925

99.950

99.975

100.000
R

el
ia

bi
lit

y
[%

]

CAN
Caiba

Figure 8: CAIBA achieves similar reliability to CAN for
low data rates but it reaches the timing limitations of the
SDCC slightly earlier when increasing the rate.

ticator. We repeat each measurement ten times and show
our results (incl. 95% confidence intervals) in Figure 8.

For low data rates, we surprisingly observe that CAIBA
achieves slightly higher reliability than CAN with no
frame loss observed for data rates below 35 kbit/s. The
most likely explanation for this effect is that the authen-
ticator ECU, which acts as an additional CAN receiver
for these measurements, leads to rare misinterpretations
of the ACK bit. As we reach the maximum data rates
supported reliably by the SDCC (i.e., 40 kbit/s), CAIBA’s
reliability starts to decrease. Here, we reach the limitations
of the timing accuracy achievable in a pure software-
defined controller slightly earlier than for CAN due to
the delicate bit synchronization necessary during RBF. A
similar drop in reliability can also be observed in CAN
when increasing the data rates further.

Overall, CAIBA can operate with similar reliability as
CAN. This high reliability can however only be achieved
with an authenticator providing precise timing relative to
the bus speed. For higher data rates, this is only achievable
through hardware-implementations of CAIBA controllers.

8.3. Compatibility with Legacy CAN Devices

We cannot expect that each device on a bus is aware
of CAIBA. Otherwise, car manufacturers would have to
convince each ECU supplier to adopt CAIBA, before
the first car can employ multicast source authentication.
Thus, CAIBA is specifically designed to not interfere with
legacy communication. Also, only transmitters have to
be altered to support CAIBA, while AUTOSAR SecOC-
implementing receivers can still benefit from the provided
security without any modifications (cf. Section 5).

To validate the compatibility with legacy devices, we
tested CAIBA in combination with three additional off-the-
shelf receivers. In particular, we used CAIBA in combi-
nation with an MCP2515 CAN controller connected to
a Raspberry Pi 3 trough SPI in the form of the Wave-
share RS485 CAN HAT [78], the integrated CAN inter-
preter of a MULTICOMP PRO MP720025 EU-UK [51]
oscilloscope, and a CANOpen Evaluation Board using the
Frenzel+Berg CO4011A Controller [21]. All three devices
served as regular receivers for authenticated CAN mes-
sages that were modified by the CAIBA authenticator. As
a result, no anomalies have been observed when reading
CAN messages with any device. Thus, we conclude that
CAIBA is indeed compatible with unmodified receivers
and legacy CAN communication.

1 2 3 4 5
Payload Length [byte]

0
20
40
60
80

100
120
140
160

P
ro
ce
ss
in
g
T
im

e
[µ
s]

AUTOSAR SecOC Caiba (live) Caiba (preprocessing)

Figure 9: Processing overhead of CAIBA’s tag computa-
tion on a representative ARM Cortex M3 chip is signif-
icantly lower than a single frame transmission (128µs)
even if CAN is operated at 1Mbit/s.

8.4. Upper Bound on Processing Overhead

In the literature, cryptographic approaches to pro-
tect the CAN bus are often criticized for excessive pro-
cessing overhead. Indeed, the computation of a single
HMAC-SHA256 tag on an ARM Cortex M3 (32 MHz)
takes 1641.4 ± 0.1µs. The ARM Cortex M3 is a typical
prototyping processor with similar processing power to
commercial ECUs, which are however built to operate
reliably even in harsh environments. The computation
of one tag thus takes over 10 times longer than the
transmission of a single CAN frame at 1Mbit/s (128µs).
In other words, a corresponding ECU could only verify
or authenticate one tenth of all CAN frames transmitted
on a fully utilized 1Mbit/s bus. To assess the overhead
of CAIBA on the ECUs, we measured the duration to
compute a tag (consisting of t

s and t
i) with a length of

24 bit for payload lengths varying between 1 and 5 bytes.
For the integrity-protecting tag t

i, we compute a
CMAC tag as recommended in AUTOSAR SecOC. On the
other hand, the source-authenticating tag t

s is computed
based on BP-MAC for fast online computation by the
authenticator. As our results in Figure 9 demonstrate, the
overhead of the additional tag computation is at most 51%
in total. Here, a fixed overhead of 19.9µs is caused by
the preprocessed computation of blinding tags. The actual
additional delay during tag computation only amounts to
between 14.6µs and 31.3µs, depending on the payload
length. Moreover, we observe that if AUTOSAR SecOC
were to adopt BP-MAC for its tag computation, it could
reduce its processing time by 69.0µs, i.e., CAIBA would
then be faster than AUTOSAR SecOC with its recom-
mended MAC scheme of today.

As we expect that commercially deployed CAIBA
controllers are implemented in hardware, the overhead of
BP-MAC is suspected to further reduce significantly [75].
Overall, we found that cryptographic processing is not
a significant drawback for ECUs, even for cryptographic
processing in software, due to the selection of a fast, yet
secure, MAC scheme.

8.5. No Limitations to the Bus Length

As the authenticator’s overwritten signal must be re-
liably sampled by the receiving ECUs, we now look at
potential bus length restrictions. In the worst case, the
originally transmitted signal and the overwritten signal

are delayed by twice the distance between the sender
and the authenticator. This maximal offset occurs if the
receiver is placed near the sender on one extremity of
the bus with a maximum distance to the centrally placed
authenticator. Hence, one might expect a reduction in
the maximum CAN cable length by the employment of
CAIBA. However, adding up the delays for signal prop-
agation, overwriting, and synchronization even for the
maximal bus lengths, CAIBA’s delays are still tolerable
according to the acceptable intervals for all bit rates of
CAN (assuming a single centrally placed authenticator).

Looking at the example for 1Mbit/s, CAN supports
a maximum cable length of 25m and a receiver sam-
pling point 750 ns after the start of a bit. Adding the
propagation delay of traveling halfway and back (125 ns),
three quanta idle time for synchronization and back-
propagation (375 ns), and the authenticator’s transceiver
delay (210 ns) results in a worst-case delay of 690 ns

4.
Hence, even with a maximum CAN cable length and
worst-case sender and receiver placement, the overwritten
signal is still stable at the receiver before it samples the
bus 750 ns after the start of the signal. Using CAIBA thus
does not restrict maximum cable length, as other aspects
of CAN are more restrictive, e.g., arbitration and ACK
bits that must function over the entire length of the bus.
Meanwhile, the centrally placed authenticator is closer to
the sender and thus operates with lower propagation delay.

To practically validate that CAIBA can operate on
longer buses, we placed a 50m twisted pair cable between
the authenticator on the one end of the cable, and the
sending as well as the receiving ECU on the other end
of the cable. This corresponds to the worst-case scenario
for a 100m long bus. We transmit 10,000 CAN frames at
40 kbit/s and repeat this measurement ten times. Note that
at these speeds CAN could operate on a bus 10 times as
long, but only reliably with the use of optocouplers [18].
We achieve a reliability of 99.95 ± 0.03%. While this
reliability is even slightly higher than for the short bus
(99.92 ± 0.01%), potentially due to better stabilizing of
the signal during propagation, they lie within the margin
of error of each other. Overall, we can thus conclude that
CAIBA can operate reliably even on longer buses and does,
in theory, not restrict the maximum bus length at all.

8.6. Long-Term Impact of Overwriting Bits

Finally, we study potential long-term adverse effects
of CAIBA on the hardware. When the authenticator over-
writes a dominant bit, the inversely connected transceiver
sinks the current from the bus line, resulting in an ac-
tively driven recessive state. While this can be seen as
a short circuit on the bus (from the view of the original
transceiver) with a dampened current, all transceivers must
be short-circuit proof for fault tolerance [27].

Additionally, we measure the current that flows
through the affected transceivers during the overwriting
of dominant bits. We observe a maximum current of
28mA, which is within specifications for common CAN
transceivers such as the Philips TCA1050 (100mA) [62]
or the TI SN65HVD25x (160mA) [71]. Most importantly,
these currents only affect CAIBA transceivers. Legacy

4. Baseline numbers stem from the CANopen standard [18].

ECUs connected to the same bus are not affected as
they only listen when dominant bits are overwritten. Con-
sequently, there exists no risk for long-term effects of
operating CAIBA in CAN.

9. Limitations and Future Challenges

We present CAIBA as a novel solution to the multicast
source authentication problem and thus protect CAN. In
this context, we provide a proof-of-concept implementa-
tion and show its compatibility and reliance in a range of
evaluations. In the following, we identify current limita-
tions and potential future improvements for CAIBA.

Broader Applicability of CAIBA. CAIBA promises
multicast source authentication without verification delay
or excessive bandwidth requirements. Indeed, we demon-
strate CAIBA’s seamless integration into the CAN bus
protocol. However, it remains to be investigated how
widely applicable CAIBA is beyond CAN. Other auto-
motive buses, such as LIN [30] and FlexRay [28], show
great potential but also pose some unique challenges. The
potential of CAIBA in these and other networks, such as
star topologies with the central switch taking on the role
of the authenticator, is yet unclear.

Hardware-based CAIBA ECUs. We prototypically
show the applicability of CAIBA on a software-defined
CAN controller and its interoperability with off-the-shelf
CAN controllers. However, inherent performance limita-
tions and timing inaccuracies of software-defined con-
trollers limit the bus speeds. A hardware-based CAIBA
controller is thus needed for the deployment of CAIBA
with typical bus speeds in cars.

CAIBA alongside Intrusion Detection. At the begin-
ning of this paper, we argued that we should not rely solely
on IDS because of their imperfect detection, false alarms,
and potential evasions. Nonetheless, IDSs do not become
superfluous because of CAIBA. In contrast, the operation
of CAIBA produces characteristic behavior that can even
facilitate monitoring by an adapted intrusion detection
mechanism to detect any anomalous behavior early. Such
potential symbiosis should be further investigated.

Hardening the Authenticator Module. Throughout
this paper, we assume a trusted authenticator that is hard
to compromise even with physical access to the CAN bus.
This assumption is in line with other proposals, e.g., IDSs
for in-vehicular communication. Still, the concrete steps
to maximize temper-resilience beyond offering no external
connectivity must be worked out.

10. Ethics Considerations

By proposing a preventive measure to secure commu-
nication on the CAN bus, our research might not raise
obvious major ethical concerns. Still, during the concep-
tualization and execution of our research we carefully fol-
lowed established best-practices and guidelines to identify
and address any existing ethics-related concerns [37], [72].

Our survey and especially Appendix A summarize
the weaknesses of existing CAN security mechanisms
proposed in research. The information summarized there
could potentially be exploited by malicious actors. How-
ever, our analysis is based on information that is mostly

already publicly available and, with the exception of AU-
TOSAR SecOC [5], we are not aware that any of these
proposed schemes are used in commercial products. For
the AUTOSAR SecOC specification, the vulnerability to
masquerading attacks is a known and accepted risk [5].
Thus, we carefully ensured to not give malicious actors
any advantage to compromise any CAN-controlled system
through the information we provide in this paper. In
contrast, we raise awareness to weaknesses in previously
proposed schemes, thus potentially preventing the deploy-
ment of vulnerable security schemes which could offer a
false sense of security.

Concerning publishing the idea of CAIBA, we may
give malicious actors early access to understand the mech-
anism behind a security scheme that may be later deployed
in cars or military vehicles. Thus, malicious actors have
more time to identify weaknesses and prepare for prac-
tically exploiting them. However, exposing security solu-
tions to public scrutiny is important, such that the research
community can jointly identify weaknesses before they
can be exploited to derive overall more secure solutions.

11. Conclusion

The increasing connectivity of modern vehicles, cou-
pled with the vulnerability of the CAN bus, has raised
significant concerns regarding the safety and security of
automotive systems. Compromised ECUs of, e.g., info-
tainment systems, can easily masquerade as other en-
tities in the network and take over critical control of
a vehicle. Current security mechanism mostly rely on
intrusion detection or group key-based authentication tags,
with both approaches not protecting sufficiently against
masquerading attacks. In contrast, we propose a novel
multicast source authentication scheme (CAIBA) for buses
that, unlike prior approaches, does not require longer tags
or delayed verification. CAIBA relies on an authenticator
that reactively overwrites bits of the authentication tag
included in each message. The keys to generate the orig-
inal tags are only known by the genuine source, while all
receivers can verify the altered tags. We show the applica-
bility of CAIBA in CAN, providing source authentication
for ECUs implementing the AUTOSAR SecOC specifica-
tion. CAIBA is incrementally deployable and interoperable
with legacy CAN traffic, while achieving high reliability
with minimal processing overhead.

References

[1] “AMD LogiCORE™ CAN IP core ,” https://www.xilinx.
com/products/intellectual-property/do-di-can.html, last accessed:
26.6.2024.

[2] “CAN Injection: Keyless Car Theft,” https://kentindell.github.io/
2023/04/03/can-injection/, last accessed: 29.8.2024.

[3] “NXP FlexCAN Controller,” https://www.nxp.com/products/
nxp-product-information/ip-block-licensing/flexcan-controller:
FLEXCAN-CONTROLLER, last accessed: 26.6.2024.

[4] E. Aliwa, O. Rana, C. Perera, and P. Burnap, “Cyberattacks
and Countermeasures for In-Vehicle Networks,” ACM Comput-
ing Surveys (CSUR), vol. 54, no. 1, pp. 1–37, 2021, DOI:
10.1145/3431233.

[5] Autosar, “Specification of Secure Onboard Communication
Protocol, AUTOSAR FO R20-11,” Standard, 2020,
https://www.autosar.org/fileadmin/standards/R20-11/FO/
AUTOSAR PRS SecOcProtocol.pdf.

[6] G. Bella, P. Biondi, G. Costantino, and I. Matteucci, “TOUCAN: A
proTocol tO secUre Controller Area Network,” in Proceedings of
the ACM Workshop on Automotive Cybersecurity (AutoSec), 2019,
DOI: 10.1145/3309171.3309175.

[7] M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: New
Methods for Message Authentication Using Finite Pseudorandom
Functions,” in Proceedings of the Annual International Cryptology
Conference (CRYPTO), 1995, DOI: 10.1007/3-540-44750-4 2.

[8] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer, and D. Xu,
“Evading Voltage-Based Intrusion Detection on Automotive CAN,”
in Proceedings of the Network and Distributed Systems Security
Symposium (NDSS), 2021, DOI: 10.14722/ndss.2021.23013.

[9] D. Boneh and V. Shoup, A Graduate Course in Applied Cryptog-
raphy, 2023.

[10] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas, “Multicast security: A taxonomy and some efficient
constructions,” in Proceedings of the 18th Annual Joint Conference
on Computer Communications (INFOCOM), vol. 2, 1999, DOI:
10.1109/INFCOM.1999.751457.

[11] G. Cena, I. C. Bertolotti, T. Hu, and A. Valenzano, “On a
software-defined CAN controller for embedded systems,” Com-
puter Standards & Interfaces, vol. 63, pp. 43–51, 2019, DOI:
10.1016/j.csi.2018.11.007.

[12] Y. Challal, H. Bettahar, and A. Bouabdallah, “A taxonomy of
multicast data origin authentication: Issues and solutions,” IEEE
Communications Surveys & Tutorials, vol. 6, no. 3, pp. 34–57,
2004, DOI: 10.1109/COMST.2004.5342292.

[13] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive Experimental Analyses of Automotive Attack
Surfaces,” in Proceedings of the 20th USENIX Security Sympo-
sium (USENIX Sec’11), 2011, DOI: 10.5555/2028067.2028073.

[14] K.-T. Cho and K. G. Shin, “Fingerprinting Electronic Control
Units for Vehicle Intrusion Detection,” in Proceedings of the
25th USENIX Security Symposium (USENIX Sec’16’), 2016, DOI:
10.5555/3241094.3241165.

[15] ——, “Viden: Attacker Identification on In-Vehicle Net-
works,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), 2017, DOI:
10.1145/3133956.3134001.

[16] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “VoltageIDS:
Low-Level Communication Characteristics for Automotive Intru-
sion Detection System,” IEEE Transactions on Information Foren-
sics and Security, vol. 13, no. 8, pp. 2114–2129, 2018, DOI:
10.1109/TIFS.2018.2812149.

[17] A. de Faveri Tron, S. Longari, M. Carminati, M. Polino, and
S. Zanero, “CANflict: Exploiting Peripheral Conflicts for Data-
Link Layer Attacks on Automotive Networks,” in Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2022, DOI: 10.1145/3548606.3560618.

[18] E. C. for Electrotechnical Standardization, “Industrial communica-
tions subsystem based on ISO 11898(CAN) for controller-device
interfaces – Part 4: CANopen,” Cenelec, Standard, 2002.

[19] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “SIM-
PLE: single-frame based physical layer identification for intrusion
detection and prevention on in-vehicle networks,” in Proceedings of
the 35th Annual Computer Security Applications Conference (AC-
SAC), 2019, DOI: 10.1145/3359789.3359834.

[20] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and
Vulnerable: A Story of Telematic Failures,” in Proceedings of the
9th USENIX Workshop on Offensive Technologies (WOOT), 2015,
DOI: 10.5555/2831211.2831226.

[21] Frenzel+Berg, “CANopen Chip CO4011,” https://www.
frenzel-berg.de/fileadmin/FrenzelBerg/Datenblaetter/CANopen
Chip/ds co4011b en.pdf.

[22] J. Griffith, “Learn the inner workings of a CAN bus driver and
how to debug your system,” Texas Instruments, Technical Article,
2016, https://www.ti.com/lit/ta/ssztbo8/ssztbo8.pdf.

https://www.xilinx.com/products/intellectual-property/do-di-can.html
https://www.xilinx.com/products/intellectual-property/do-di-can.html
https://kentindell.github.io/2023/04/03/can-injection/
https://kentindell.github.io/2023/04/03/can-injection/
https://www.nxp.com/products/nxp-product-information/ip-block-licensing/flexcan-controller:FLEXCAN-CONTROLLER
https://www.nxp.com/products/nxp-product-information/ip-block-licensing/flexcan-controller:FLEXCAN-CONTROLLER
https://www.nxp.com/products/nxp-product-information/ip-block-licensing/flexcan-controller:FLEXCAN-CONTROLLER
https://doi.org/10.1145/3431233
https://www.autosar.org/fileadmin/standards/R20-11/FO/AUTOSAR_PRS_SecOcProtocol.pdf
https://www.autosar.org/fileadmin/standards/R20-11/FO/AUTOSAR_PRS_SecOcProtocol.pdf
https://doi.org/10.1145/3309171.3309175
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.14722/ndss.2021.23013
https://doi.org/10.1109/INFCOM.1999.751457
https://doi.org/10.1016/j.csi.2018.11.007
https://doi.org/10.1109/COMST.2004.5342292
https://dl.acm.org/doi/10.5555/2028067.2028073
https://dl.acm.org/doi/10.5555/3241094.3241165
https://doi.org/10.1145/3133956.3134001
https://doi.org/10.1109/TIFS.2018.2812149
https://doi.org/10.1145/3548606.3560618
https://doi.org/10.1145/3359789.3359834
https://dl.acm.org/doi/10.5555/2831211.2831226
https://www.frenzel-berg.de/fileadmin/FrenzelBerg/Datenblaetter/CANopen_Chip/ds_co4011b_en.pdf
https://www.frenzel-berg.de/fileadmin/FrenzelBerg/Datenblaetter/CANopen_Chip/ds_co4011b_en.pdf
https://www.frenzel-berg.de/fileadmin/FrenzelBerg/Datenblaetter/CANopen_Chip/ds_co4011b_en.pdf
https://www.ti.com/lit/ta/ssztbo8/ssztbo8.pdf

[23] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede,
“LiBrA-CAN: A Lightweight Broadcast Authentication Protocol
for Controller Area Networks,” in Proceedings of the 11th Inter-
national Conference on Cryptology and Network Security (CANS),
2012, DOI: 10.1007/978-3-642-35404-5 15.

[24] B. Groza, L. Popa, and P.-S. Murvay, “Canto-covert authentication
with timing channels over optimized traffic flows for can,” IEEE
Transactions on Information Forensics and Security, vol. 16, 2020,
DOI: 10.1109/TIFS.2020.3017892.

[25] ——, “Highly Efficient Authentication for CAN by Iden-
tifier Reallocation With Ordered CMACs,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 6, 2020, DOI:
10.1109/TVT.2020.2990954.

[26] A. Hazem and H. Fahmy, “LCAP-A Lightweight CAN Authentica-
tion Protocol for Securing In-Vehicle Networks,” in 10th Embedded
Security in Cars Conference (ESCAR ’12), vol. 6, 2012.

[27] International Organization for Standardization, “Road vehicles -
Controller area network (CAN) – Part 3: Low-speed, fault-tolerant,
medium-dependent interface,” Iso 11898-3:2006, 2006.

[28] ——, “Road vehicles - FlexRay communications system – Part 1:
General information and use case definition),” Iso 17458-{1}:2013,
2013.

[29] ——, “Road vehicles - Controller area network (CAN) – Part 1:
Data link layer and physical signalling,” Iso 11898-1:2015, 2015.

[30] ——, “Road vehicles - Local Internconnect Network (LIN) –
Part 1: General information and use case definition),” Iso 17987-
1:2016, 2016.

[31] ——, “Road vehicles - Controller area network (CAN) – Part 2:
High-speed medium access unit,” Iso 11898-2:2022, 2022.

[32] H. J. Jo, J. H. Kim, H.-Y. Choi, W. Choi, D. H. Lee, and I. Lee,
“MAuth-CAN: Masquerade-Attack-Proof Authentication for In-
Vehicle Networks,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, 2020, DOI: 10.1109/TVT.2019.2961765.

[33] J. Katz and A. Y. Lindell, “Aggregate Message Authentication
Codes,” in Cryptographers’ Track at the RSA Conference (CT-
RSA), 2008, DOI: 10.1007/978-3-540-79263-5 10.

[34] S. Kim and R. Shrestha, “AUTOSAR Embedded Security in Vehi-
cles,” in Automotive Cyber Security: Introduction, Challenges, and
Standardization. Springer, 2020, DOI: 10.1007/978-981-15-8053-
6 5.

[35] M. Kneib and C. Huth, “Scission: Signal Characteristic-Based
Sender Identification and Intrusion Detection in Automotive Net-
works,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2018, DOI:
10.1145/3243734.3243751.

[36] M. Kneib, O. Schell, and C. Huth, “EASI: Edge-Based
Sender Identification on Resource-Constrained Platforms for
Automotive Networks,” in Proceedings of the Network and
Distributed Systems Security Symposium (NDSS), 2020, DOI:
10.14722/ndss.2020.24025.

[37] T. Kohno, Y. Acar, and W. Loh, “Ethical Frameworks and Com-
puter Security Trolley Problems: Foundations for Conversations,”
in 32nd USENIX Security Symposium (USENIX Sec’23), 2023.

[38] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Check-
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and
S. Savage, “Experimental Security Analysis of a Modern Auto-
mobile,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2010, DOI: 10.1109/SP.2010.34.

[39] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and
S. Horihata, “CaCAN-Centralized Authentication System in CAN
(Controller Area Network),” in 14th Embedded Security in Cars
(ESCAR ’14), 2014.

[40] Y. Lee, Y.-E. Kim, J.-G. Chung, and S. Woo, “Real Time Perfect
Bit Modification Attack on In-Vehicle CAN,” IEEE Transactions
on Vehicular Technology, vol. 72, no. 12, pp. 15 154–15 171, 2023,
DOI: 10.1109/TVT.2023.3295695.

[41] J.-Q. Li, F. R. Yu, G. Deng, C. Luo, Z. Ming, and Q. Yan,
“Industrial internet: A survey on the enabling technologies, applica-
tions, and challenges,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 3, 2017, DOI: 10.1109/COMST.2017.2691349.

[42] T. Limbasiya, K. Z. Teng, S. Chattopadhyay, and J. Zhou, “A
systematic survey of attack detection and prevention in Connected
and Autonomous Vehicles,” Vehicular Communications, vol. 37,
2022, DOI: 10.1016/j.vehcom.2022.100515.

[43] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-Security for
the Controller Area Network (CAN) Communication Protocol,”
in Proceedings of the International Conference on Cyber Secu-
rity (CyberSecurity), 2012, DOI: 10.1109/CyberSecurity.2012.7.

[44] S. Longari, M. Penco, M. Carminati, and S. Zanero, “CopyCAN:
An Error-Handling Protocol based Intrusion Detection System for
Controller Area Network,” in Proceedings of the ACM Work-
shop on Cyber-Physical Systems Security & Privacy, 2019, DOI:
10.1145/3338499.3357362.

[45] S. Longari, C. A. Pozzoli, A. Nichelini, M. Carminati, and
S. Zanero, “CANdito: Improving Payload-Based Detection of At-
tacks on Controller Area Networks,” in International Symposium
on Cyber Security, Cryptology, and Machine Learning, 2023, DOI:
10.1007/978-3-031-34671-2 10.

[46] A. Lotto, F. Marchiori, A. Brighente, and M. Conti, “A
Survey and Comparative Analysis of Security Properties of
CAN Authentication Protocols,” 2024, arXiv:2401.10736, DOI:
10.48550/arXiv.2401.10736.

[47] Z. Lu, Q. Wang, X. Chen, G. Qu, Y. Lyu, and Z. Liu, “LEAP: A
Lightweight Encryption and Authentication Protocol for In-Vehicle
Communications,” in IEEE Intelligent Transportation Systems Con-
ference (ITSC), 2019, DOI: 10.1109/ITSC.2019.8917500.

[48] E. O. Marasco and F. Quaglia, “AuthentiCAN: a Protocol for
Improved Security over CAN,” in Fourth World Conference on
Smart Trends in Systems, Security and Sustainability (WorldS4),
2020, DOI: 10.1109/WorldS450073.2020.9210290.

[49] A. J. Michaels, V. S. S. Palukuru, M. J. Fletcher, C. Henshaw,
S. Williams, T. Krauss, J. Lawlis, and J. J. Moore, “CAN Bus
Message Authentication via Co-Channel RF Watermark,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 4, pp. 3670–
3686, 2022, DOI: 10.1109/TVT.2022.3143708.

[50] C. Miller and C. Valasek, “Remote Exploitation of an Unaltered
Passenger Vehicle,” Black Hat USA, 2015, https://illmatics.com/
Remote%20Car%20Hacking.pdf.

[51] Multicomp Pro, “4 Channel Digital Storage Oscilloscope,” https:
//www.farnell.com/datasheets/3155232.pdf.

[52] M. Müter and N. Asaj, “Entropy-Based Anomaly Detection for
In-Vehicle Networks,” in IEEE Intelligent Vehicles Symposium
(IV’11), 2011, DOI: 10.1109/IVS.2011.5940552.

[53] A. Nichelini, C. A. Pozzoli, S. Longari, M. Carminati, and
S. Zanero, “CANova: A hybrid intrusion detection framework
based on automatic signal classification for CAN,” Computers &
Security, vol. 128, 2023, DOI: 10.1016/j.cose.2023.103166.

[54] S. Nie, L. Liu, and Y. Du, “Free-Fall: Hacking Tesla from
Wireless to CAN Bus,” Black Hat USA, vol. 25, no. 1,
p. 16, 2017, https://www.blackhat.com/docs/us-17/thursday/us-17-
Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf.

[55] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-Air: How we
Remotely Compromised the Gateway, BCM, and Autopilot
ECUs of Tesla Cars,” Black Hat USA, vol. 91, 2018,
https://i.blackhat.com/us-18/Thu-August-9/us-18-Liu-Over-The-
Air-How-We-Remotely-Compromised-The-Gateway-Bcm-And-
Autopilot-Ecus-Of-Tesla-Cars-wp.pdf.

[56] S. Nürnberger and C. Rossow, “–vatiCAN–Vetted, Authenticated
CAN Bus,” in Proceedings of the International Conference on
Cryptographic Hardware and Embedded Systems (CHES), 2016,
DOI: 10.1007/978-3-662-53140-2 6.

[57] F. Oberti, A. Savino, E. Sanchez, P. Casasso, F. Parisi, and S. D.
Carlo, “CAN-MM: Multiplexed Message Authentication Code for
Controller Area Network Message Authentication in Road Vehi-
cles,” IEEE Transactions on Vehicular Technology, 2024, DOI:
10.1109/TVT.2024.3402986.

[58] A. Perrig, “The BiBa one-time signature and broadcast authen-
tication protocol,” in Proceedings of the 8th ACM Conference
on Computer and Communications Security (CSS), 2001, DOI:
10.1145/501983.501988.

https://doi.org/10.1007/978-3-642-35404-5_15
https://doi.org/10.1109/TIFS.2020.3017892
https://doi.org/10.1109/TVT.2020.2990954
https://doi.org/10.1109/TVT.2019.2961765
https://doi.org/10.1007/978-3-540-79263-5_10
https://doi.org/10.1007/978-981-15-8053-6_5
https://doi.org/10.1007/978-981-15-8053-6_5
https://doi.org/10.1145/3243734.3243751
https://doi.org/10.14722/ndss.2020.24025
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1109/TVT.2023.3295695
https://doi.org/10.1109/COMST.2017.2691349
https://doi.org/10.1016/j.vehcom.2022.100515
https://doi.org/10.1109/CyberSecurity.2012.7
https://doi.org/10.1145/3338499.3357362
https://doi.org/10.1007/978-3-031-34671-2_10
https://doi.org/10.48550/arXiv.2401.10736
https://doi.org/10.1109/ITSC.2019.8917500
https://doi.org/10.1109/WorldS450073.2020.9210290
https://doi.org/10.1109/TVT.2022.3143708
https://illmatics.com/Remote%20Car%20Hacking.pdf
https://illmatics.com/Remote%20Car%20Hacking.pdf
https://www.farnell.com/datasheets/3155232.pdf
https://www.farnell.com/datasheets/3155232.pdf
https://doi.org/10.1109/IVS.2011.5940552
https://doi.org/10.1016/j.cose.2023.103166
https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf
https://www.blackhat.com/docs/us-17/thursday/us-17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Liu-Over-The-Air-How-We-Remotely-Compromised-The-Gateway-Bcm-And-Autopilot-Ecus-Of-Tesla-Cars-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Liu-Over-The-Air-How-We-Remotely-Compromised-The-Gateway-Bcm-And-Autopilot-Ecus-Of-Tesla-Cars-wp.pdf
https://i.blackhat.com/us-18/Thu-August-9/us-18-Liu-Over-The-Air-How-We-Remotely-Compromised-The-Gateway-Bcm-And-Autopilot-Ecus-Of-Tesla-Cars-wp.pdf
https://doi.org/10.1007/978-3-662-53140-2_6
https://doi.org/10.1109/TVT.2024.3402986
https://doi.org/10.1145/501983.501988

[59] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient
and Secure Source Authentication for Multicast,” in
Proceedings of the Network and Distributed Systems
Security Symposium (NDSS), 2001, https://www.ndss-
symposium.org/wp-content/uploads/2017/09/Efficient-and-Secure-
Source-Authentication-for-Multicast-Adrian-Perrig.pdf.

[60] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient au-
thentication and signing of multicast streams over lossy chan-
nels,” in Proceedings of the IEEE Symposium on Security and
Privacy (S&P), 2000, DOI: 10.1109/SECPRI.2000.848446.

[61] M. D. Pesé, J. W. Schauer, J. Li, and K. G. Shin, “S2-CAN: Suf-
ficiently Secure Controller Area Network,” in Proceedings of the
37th Annual Computer Security Applications Conference (ACSAC),
2021, DOI: 10.1145/3485832.3485883.

[62] Philips Semiconductors, “TJA1050 - High speed CAN transceiver,”
Tech. Rep., 2002.

[63] A.-I. Radu and F. D. Garcia, “LeiA: A Lightweight Authentication
Protocol for CAN,” in Proceedings of the 21st European Sympo-
sium on Research in Computer Security (ESORICS), 2016, DOI:
10.1007/978-3-319-45741-3 15.

[64] M. Rogers, P. Weigand, J. Happa, and K. Rasmussen, “Detect-
ing CAN Attacks on J1939 and NMEA 2000 Networks,” IEEE
Transactions on Dependable and Secure Computing, 2022, DOI:
10.1109/TDSC.2022.3182481.

[65] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Pooven-
dran, “Cloaking the Clock: Emulating Clock Skew in Controller
Area Networks,” in Proceedings of the 9th International Confer-
ence on Cyber-Physical Systems (ICCPS), 2018, DOI: 10.1109/IC-
CPS.2018.00012.

[66] O. Schell and M. Kneib, “SPARTA: Signal Propagation-based
Attack Recognition and Threat Avoidance for Automotive Net-
works,” in Proceedings of the ACM Asia Conference on Com-
puter and Communications Security (ASIA CCS), 2023, DOI:
10.1145/3579856.3595788.

[67] H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuer-
mann, “Car2X Communication: Securing the Last Meter - A
Cost-Effective Approach for Ensuring Trust in Car2X Appli-
cations Using In-Vehicle Symmetric Cryptography,” in IEEE
Vehicular Technology Conference (VTC Fall’11), 2011, DOI:
10.1109/VETECF.2011.6093081.

[68] K. Serag, R. Bhatia, A. Faqih, M. O. Ozmen, V. Kumar, Z. B.
Celik, and D. Xu, “ZBCAN: A Zero-Byte CAN Defense System,”
in Proceedings of the 32nd USENIX Security Symposium (USENIX
Sec’23), 2023, DOI: 10.5555/3620237.3620623.

[69] J. Shin, H. Kim, S. Lee, W. Choi, D. H. Lee, and H. J. Jo,
“RIDAS: Real-time identification of attack sources on controller
area networks,” in Proceedings of the 32nd USENIX Security Sym-
posium (USENIX Sec’23), 2023, DOI: 10.5555/3620237.3620624.

[70] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion Detection
System Based on the Analysis of Time Intervals of CAN Mes-
sages for In-Vehicle Network,” in Proceedings of the International
Conference on Information Networking (ICOIN’16), 2016, DOI:
10.1109/ICOIN.2016.7427089.

[71] Texas Instruments, “SN65HVD25x Turbo CAN Transceivers for
Higher Data Rates and Large Networks Including Features for
Functional Safety,” Tech. Rep., 2015.

[72] U.S. Department of Homeland Security, “The Menlo
Report: Ethical Principles Guiding Information
and Communication Technology Research,” 2012,
https://www.dhs.gov/sites/default/files/publications/CSD-
MenloPrinciplesCORE-20120803 1.pdf.

[73] J. Van Bulck, J. T. Mühlberg, and F. Piessens, “VulCAN: Effi-
cient Component Authentication and Software Isolation for Au-
tomotive Control Networks,” in Proceedings of the 33rd Annual
Computer Security Applications Conference (ACSAC), 2017, DOI:
10.1145/3134600.3134623.

[74] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth
- A Simple, Backward Compatible Broadcast Authentication Pro-
tocol for CAN bus,” in ECRYPT Workshop on Lightweight Cryp-
tography, 2011.

[75] E. Wagner, M. Serror, K. Wehrle, and M. Henze, “BP-MAC: Fast
Authentication for Short Messages,” in Proceedings of the 15th
ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec), 2022, DOI: 10.1145/3507657.3528554.

[76] Q. Wang, Y. Qian, Z. Lu, Y. Shoukry, and G. Qu, “A Delay based
Plug-in-Monitor for Intrusion Detection in Controller Area Net-
work,” in Asian Hardware Oriented Security and Trust Symposium
(AsianHOST), 2018, DOI: 10.1109/AsianHOST.2018.8607178.

[77] Q. Wang and S. Sawhney, “VeCure: A Practical Security
Framework to Protect the CAN bus of Vehicles,” in Interna-
tional Conference on the Internet of Things (IOT), 2014, DOI:
10.1109/IOT.2014.7030108.

[78] Waveshare, “Rs485 Can Hat,” https://www.waveshare.com/wiki/
RS485 CAN HAT.

[79] H. Wen, Q. A. Chen, and Z. Lin, “Plug-N-Pwned: Comprehensive
Vulnerability Analysis of OBD-II Dongles as A New Over-the-
Air Attack Surface in Automotive IoT,” in Proceedings of the
29th USENIX Security Symposium (USENIX Sec’20), 2020, DOI:
10.5555/3489212.3489266.

[80] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack
on the Connected Car and Security Protocol for In-Vehicle CAN,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16,
no. 2, pp. 993–1006, 2015, DOI: 10.1109/TITS.2014.2351612.

[81] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
Intrusion Detection Based on Constant CAN Message Frequen-
cies Across Vehicle Driving Modes,” in Proceedings of the ACM
Workshop on Automotive Cybersecurity (AutoSec), 2019, DOI:
10.1145/3309171.3309179.

Data Availability

Our modifications to the SDCC [11] to support CAIBA
are available at https://github.com/fkie-cad/caiba.

Appendix

A. Detailed Analysis of Selected Schemes

A recent survey on CAN authentication schemes [46]
revealed weaknesses with many of the proposed CAN
authentication schemes but classified others as secure
protocols (LiBrA-CAN [23], LinAuth [43], LCAP [26],
CaCAN [39], and AuthentiCAN [48]). With regard to the
eleven drawbacks defined in Section 3.2, we took a closer
look at the latter schemes (cf. Section A.1 – A.6), as well
as some additional authentication schemes not considered
by the authors (i.e., Watermarking [49], CANTO [24],
ZBCAN [68], CAN-MM [57], LEAP [47], and CAN-
TORO [25] in Section A.8 – A.12), and re-assess their
security in this section. Overall, we find that none of the
current schemes offer full protection (as shown in Table 1),
hence justifying the existence of CAIBA.

A.1. LiBrA-CAN.
Description. LiBrA-CAN [23] uses a Mixed MAC

approach for integrity protection, i.e., keys are shared
among a subset of nodes and each node can only verify a
fraction of each authentication tag. These keys are initially
distributed by computationally superior master node. To
authenticate a frame sent to the bus, the sending ECU
first authenticates it to the master node or an helper node.
This additional node knows additional keys to compute
additional authentication data such that the remaining
ECUs can eventually (more than one helper node may
be required) verify the integrity of the original message.

https://www.ndss-symposium.org/wp-content/uploads/2017/09/Efficient-and-Secure-Source-Authentication-for-Multicast-Adrian-Perrig.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/Efficient-and-Secure-Source-Authentication-for-Multicast-Adrian-Perrig.pdf
https://www.ndss-symposium.org/wp-content/uploads/2017/09/Efficient-and-Secure-Source-Authentication-for-Multicast-Adrian-Perrig.pdf
https://doi.org/10.1109/SECPRI.2000.848446
https://doi.org/10.1145/3485832.3485883
https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1109/TDSC.2022.3182481
https://doi.org/10.1109/ICCPS.2018.00012
https://doi.org/10.1109/ICCPS.2018.00012
https://doi.org/10.1145/3579856.3595788
https://doi.org/10.1109/VETECF.2011.6093081
https://dl.acm.org/doi/10.5555/3620237.3620623
https://dl.acm.org/doi/10.5555/3620237.3620624
https://doi.org/10.1109/ICOIN.2016.7427089
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://www.dhs.gov/sites/default/files/publications/CSD-MenloPrinciplesCORE-20120803_1.pdf
https://doi.org/10.1145/3134600.3134623
https://doi.org/10.1145/3507657.3528554
https://doi.org/10.1109/AsianHOST.2018.8607178
https://doi.org/10.1109/IOT.2014.7030108
https://www.waveshare.com/wiki/RS485_CAN_HAT
https://www.waveshare.com/wiki/RS485_CAN_HAT
https://dl.acm.org/doi/10.5555/3489212.3489266
https://doi.org/10.1109/TITS.2014.2351612
https://doi.org/10.1145/3309171.3309179
https://github.com/fkie-cad/caiba

Analysis. LiBrA-CAN introduces verification delays
and communication overhead, similarly to TESLA-based
protocols [59], [60] (cf. Section 4.1). This overhead grows
linearly with the number of nodes and, for a certain
number of nodes, the use of digital signatures may even
become beneficial over using LiBrA-CAN [23]. Addition-
ally, a master node with knowledge of all secret keys
exposes a single point of failure, as an attacker that
compromises this node gains full control over the network.

Takeaway. LiBrA-CAN’s scalability is limited á,
the authentication requires the sending of additional
frames % that lead to a verification delay $, and the
master node offers an attractive target to attackers as it is
in possession of all keys 4.

A.2. LinAuth.
Description. In LinAuth [43], each ECU pair shares

a secret key. For each CAN ID an ECU transmits or
receives, the ECU additionally needs to know the group of
other ECUs that are also interested messages with this ID.
A sender of a message computes an authentication tag for
each interested receiving ECU. The available space is then
evenly split among each receiver and fills with the trun-
cated authentication tags as well as the least-significant
bits of each ECU-specific counter. Each receiving ECU
knows where its authentication data starts and ends within
a frame and can thus verify the truncated authentication
tag.

Analysis. LinAuth requires significant configuration
and storage to track which node is interest in which
CAN IDs. Moreover, LinAuth does not scale to realistic
network sizes. Reserving 24 bit for authentication data
and transmitted 4 bit for each counter, as proposed by
the SecOC Profile3(JASPAR) of AUTOSAR [5],
already leaves no space for authentication data with 6
receiving ECU.

Takeaway. LinAuth requires significant upfront con-
figuration and additional storage õ and does not scale
to realistic network sizes regarding the number of ECUs
that are interested in a given CAN ID á as space in each
frame must be reserved for each receiver %.

A.3. LCAP.
Description. In LCAP [26], CAN frames are authen-

ticated by including a 2-byte “magic number” in the
payload. This magic number is an element of a hash chain
only known to the sending ECUs of a given communica-
tion group, while the receiving ECUs know the previous
element of this chain. Thus, upon reception of a frame,
receivers can verify that the magic number indeed stems
from the alleged sender.

Analysis. In LCAP, all communication groups must
be known in advance and the sender in each such group
must precompute and store a hash chain of a significant
length, amounting to several kB of data per group. If all
elements of a chain are consumed, a new chain must be
computed and handshake messages must be exchanged on
the bus, leading to protocol and communication overhead.
Most importantly, LCAP is vulnerable to the hijacking
of magic numbers. By decoding the magic number of a
payload while immediately jamming the bus afterwards,
an attacker could ensuring the frame is rejected by other

ECUs. Before the original frame is retransmitted by the
sender, the attacker can now exploit this (still valid) magic
number to inject allegedly legitimate messages.

Takeaway. LCAP produces storage õ and comuni-
cation % overhead and is vulnerable to frame intercep-
tions ».

A.4. CaCAN.
Description. Similarly to CAIBA, CaCAN [39] relies

on an authenticator node to assist in authenticating CAN
frames. This authenticator shares a secret key with each
ECUs and has the capability of overwrite in-transmission
frames with an error frame, ensuring that the frame is not
received by other ECUs. A sending ECU computes a MAC
for the message including a counter and transmits the
message, the least-significant bits of the counter, and the
first byte of the MAC in a payload of a CAN frame. The
authenticator verifies this MAC and disrupts the message
if the verification fails.

Analysis. In CaCAN no mechanism for resynchro-
nization for the counter after lost frames is devised. Con-
cerning vulnerabilities, CaCAN’s authenticator has access
to all keys, an attack does not need to compromise it to
circumvent CaCAN’s protection. It is sufficient to discon-
nect the authenticator from bus, to disable all authenticity
verification without anyone noticing. Afterwards, the at-
tacker can masquerade as any ECU through an attached
or compromised ECU as with legacy CAN networks.

Takeaway. Disconnecting CaCAN’s authenticator dis-
able all security measures . Additionally, the authenti-
cator may be compromised to gain access to all key and
masquerade as other devices 4. Finally, frame loss leads
to desynchronizations of counters that cannot be recovered
from Î.

A.5. MAuth-CAN.
Description. MAuth-CAN [32] also relies on an au-

thenticator node to authenticate CAN frames. For each
CAN ID, the sending ECU and authenticator establish a
session key. With this key, a 32-bit authentication tag is
generated and included in each CAN frame, split into the
extended identifier and payload fields. The authenticator
verifies this tag and broadcasts a report only if the veri-
fication fails. Receiving ECUs thus wait for a predefined
time after frame detection for this report and only process
the message when no report got received. If a report is
received, its authenticity if verified by the ECU and the
frame it reports on is discarded.

Analysis. The MAuth-CAN authenticator knows all
keys and if it is disconnected, no frame verification takes
place and no reports are sent. The receiving ECUs can,
however, not differentiate if reports are not sent because
the frame is authentic or because the authenticator is
not operational. Thus, after disconnecting the authenti-
cator, the attack can masquerade as any ECU through
an attached or compromised ECU. Even without attacks,
MAuth-CAN introduces a delay for all frames as ECUs
wait for a potential report, and resynchronization requires
to perform new session key exchange.

Takeaway. Disconnecting the authenticator disable all
security measures . Then, or if the authenticator is

compromised to gain access to all key and masquerade
as other devices 4. Moreover, all frames are buffered by
the receiver $ and resynchronizations is expensive Î.

A.6. AuthentiCAN.
Description. In AuthentiCAN [48], a nonce list is

exchanged between each ECU pair, secured by asymmet-
ric encryption based on a broadcasted public key. The
payload of each frame then consists of the encrypted
concatenation of a message and the first yet unused nonce
from the list. The receiver of a message can decrypt a
message and verify that the transmitted nonce matches the
expected nonce, which allegedly verifies the authenticity
of a message.

Analysis. AuthentiCAN introduces significant over-
head w.r.t. to memory and bandwidth consumption to ex-
change and keep track of the nonce lists and consequently
primarily addresses CAN-FD with its higher data rate.
Secondly, AuthentiCAN only protects the communication
between two ECUs and does not support broadcast com-
munication, i.e., frames intended for multiple receivers.

Takeaway. AuthentiCAN does not support broadcast
communication � and causes significant memory õ and
communication % overhead.

A.7. Watermarking.
Description. The idea of watermarking [49] is to

overlay a high-frequency signal over ordinary CAN trans-
missions. These overlayed signals transmit a time-varying
watermark, generated by a random number generator that
is seeded with a key known to all legitimate devices
connected to the bus.

Takeaway. A compromised ECU can transmit mes-
sages with legitimate watermarks, enabling the attack to
masquerade as any other device 4.

A.8. CANTO.
Description. CANTO [24] provides frame authenti-

cation through covert timing channels. It assumes that
all CAN IDs are transmitted in a regular pattern that is
known in advance by all receivers, which is assisted by an
optimal a priori frame scheduling to maximize inter-frame
spacing and avoid collisions. At the scheduled time, a
sending ECU computes a MAC of the frame with a shared
group key and uses it to derives an additional delay for
the frame. The receiving ECUs then verify that this delay
from the expected arrival time matches the expectation for
the transmitted frame.

Analysis. Because of its assumption that traffic is
sent in repeating patterns, the real-world applicability
of CANTO to protect in-vehicule communication may
be limited due to spontaneous actions, e.g., by humans
in the loop. Moreover, even if CAN traffic exhibits the
required regularity, the deployment of CANTO requires
the modification of each ECU to support the modified
scheduling. Finally, CANTO relies on a shared group key,
thus an attack that compromises one ECU has access to
this key and can masquerade as any other ECU.

Takeaway. CANTO does not protect against a single
compromised ECU 4 and reschedules the transmission
of frames Ý, ultimately limiting deployability in vehicles
as all ECUs must support CANTO.

A.9. ZBCAN.
Description. In ZBCAN [68], each ECU shares a

pairwise secret with an authenticator node. Transmissions
do not occur instantaneously, but instead are executed at
specific time slots. Therefore, the time after the last trans-
mission is split into discrete time spans, each consisting of
a predefined number of time slots. The sending ECU then
computes its time slot based on the CAN ID, the secret
shared with the authenticator, and an implicit message
counter. For a given CAN ID, only a subset of all time
slots are available to divide them into priority classes.
The authenticator monitors the network and verifies the
time slots of each message based on its ID, and overwrite
mis-timed messages with an error frame, such that only
verified messages are received by the other ECUs.

Analysis. While ZBCAN does not consume any ad-
ditional bandwidth, it is also susceptible to several weak-
nesses. First, the priority of IDs can be inverted: Consider
a high priority message that is generated just after its time
slot has passed. Then, a lower priority message would take
precendence within this time span before the high priority
message has another chance to be transmitted, delaying
potentially critical messages. Secondly, with the proposed
time span length of 64 nominal bit times for each priority
class ZBCAN only achieves the equivalent security of a
6-bit authentication tag. Thirdly, the authenticator can be
simply disconnected from the bus as all messages (spoofed
or not) are accepted by the network without an authentica-
tor. Finally, ZBCAN only authenticates the intention of the
sender to transmit, but not the content of the frame. Hence,
an attacker may wait for a transmission to overwrite its
content (as shown in Section 7) and the resulting error
frame to compromise the channel.

Takeaway. ZBCAN causes some transmission de-
lays Ý, only protects the sender intention to send but not
the content of this transmission with relatively low secu-
rity levels », and does not protect against disconnecting
the authenticator from the bus .

A.10. CAN-MM.
Description. With CAN-MM [57], ECUs can be incre-

mentally retrofitted with transmitter and receiver modules.
These modules compute a MAC based on a frame’s con-
tent and a group key and then multiplex the transmission
of the CAN frame and the MAC with On-Off keying. A
receiving ECU equipped with the receiver module can de-
mulitplex the transmission and verify the MAC, while all
other ECUs decode ordinary CAN frames.

Takeaway. CAN-MM does not protect against mas-
querading attacks by compromised ECU because of its
reliance on group keys 4.

A.11. LEAP.
Description. In LEAP [47], each pair of ECUs share

a secret key which is used to compute a keystream by
encrypting the CAN ID of a message. The first eleven
bits of this keystream are embedded into the payload at
a location determined by next bits of the keystream such
that an eavesdropper does not know which payload bits
consist of the authentication tag. Finally, the remaining

bits of the keystream are used to encrypt the payload. The
intended receiver of a message can perform these steps in
reverse order to decrypt the payload and verify the correct
embedding.

Takeaway. LEAP does not support broadcast com-
munication �, and requires relatively high amounts of
storage for key material õ to compute authentication tags
embedded into the payload %.

A.12. CAN-TORO.
Description. CAN-TORO [25] proposes to encrypt

CAN IDs with order-preserving encryption to hide the
sender from eavesdroppers and to authenticate them with-
out interfering with message prioritization. Each legiti-
mate ECU keeps track of a mapping of IDs to encrypted
IDs which is derived from a group key and updated
regularly, e.g., once a second. Received CAN frames are
discarded if they contain an invalid ID, where the valid
IDs change constantly.

Analysis. For CAN-TORO, all ECUs software needs
to be modified, as individual ECUs not supporting the
protocol interferes with prioritization and may lead to the
discarding of valid CAN frames. Moreover, an attack has
a short period of time to replay a valid ID before the
mapping changes or to outright overwrite the payload of a
frame. Finally, by compromising a single ECU, an attacker
gains access to the group key and can then masquerade
as any other ECU.

Takeaway. CAN-TORO is susceptible to ID reuse
by frame interception » and does not protect against
masquerading attacks by compromised ECUs 4. More-
over, tracking the mapping of encrypted IDs cost valuable
storage õ.

A.13. Other Approaches.
All approaches not further analyzed here (CA-

NAuth [74], Car2X [67], Woo-Auth [80], VeCure [77],
LeiA [63], vatiCAN [56], VulCAN [73], TOUCAN [6],
and S2-CAN [61]) have their weaknesses discussed in
detail by Lotto et al. [46].

B. Security Proof

In this section, we want to formalize the security of
CAIBA. CAIBA’s security relies on two key assumptions:

• An adversary A cannot simultaneously compromise
an ECU and the authenticator.

• A cannot undetectably overwrite bits, unless they
compromise the authenticator.

From these two assumptions, we can proof that CAIBA
achieves the same security levels as an AUTOSAR SecOC
instance with the same tag length. Here, we assume that
the underlying MAC schemes are deterministic (m has
exactly one valid t) and ideal (an adversary best strategy
is to guess a valid tag with a success rate of 1/2∣t∣, where
∣t∣ is the bit-length of t). Thus, e.g., 3-byte long tags lead
to a 1 in 2

24 chance of a tag being misclassified as valid,
i.e., a security level of 24 bit, for CAIBA and AUTOSAR
SecOC alike.

We proof the security of CAIBA with a game as
typically done for MAC schemes [9]: A may query an
oracle with messages mi ∈ M for ti and eventually
outputs a candidate forgery (m′

, t
′),m′

∉ M, where M
is the message space. A wins this game if the tag t

′ is
valid for the message m

′. The security of the scheme is
then expressed as P[A wins], i.e., the probability that A
wins this game.

We have to consider two cases. First, an adversary may
have compromised an ECU. In this case, A can generate
t
i but not ts (unless the compromised ECU is authorized

to send CAN ID). A may query the oracle for t
s
i or ti

for mi ∈ M. However, to interfere t
s′, A has no better

strategy than guessing as the underlying MAC scheme
is considered secure. Meanwhile, there exists no better
strategy than guessing t

′ either, as otherwise the MAC
scheme to compute t

s were not ideal. As the receiver
expects to receive t

i′, i.e., t must be t
i ⊕ t

s before
modification, A’s best strategy is to randomly guess a tag,
i.e., P[A wins] = 1/2∣t∣.

Secondly, an adversary may have compromised the
authenticator. In this case, A knows the keys to com-
pute all source-authenticating tags t

s, but cannot compute
integrate-protecting tags ti. A could inject a frame without
overwriting it. However, therefore they would need to
guess a valid t

i, which only succeeds with a probability of
1/2∣t

i∣. Alternatively, A could modify a transmitted mes-
sage to modify its origin (CAN ID) or content. However,
if any of these two fields are modified, t

i is no longer
valid and A would need to guess a new valid tag.

In both cases, P[A wins] = 1/2∣t∣. Thus, the security
of CAIBA depends on ∣t∣. In practice, MAC schemes
are not ideal, so the MAC scheme chosen in a concrete
deployment will cause marginally lower security.

	Introduction
	Background: CAN's Physical Layer
	State-of-the-Art on Securing CAN
	Threat Model
	Related Work

	Source Authentication with Caiba
	The Current State-of-the-Art
	General Idea of Caiba
	Requirements to Deploy Caiba
	Security Discussion

	Integrating Caiba into the CAN Bus
	Deployment Considerations
	Transmitter Design
	Authenticator Design
	Source Key Identification
	Fast In-Line MAC Computation
	Overwriting CAN Frames

	No Need to Adapt Receivers
	Error Handling and Recovery
	Reliability with Multiple Authenticators

	Fast MAC Scheme
	A Primer on BP-MAC
	Online BP-MAC Computations
	Integration into the Caiba Authenticator

	Caiba's Overwriting Mechanism
	Physical Signal Modification
	Reactive Bit Flipping
	Bit Synchronization Conflict
	Bit Stuffing Conflict

	Evaluation
	Evaluation Setup and Limitations
	Reliability
	Compatibility with Legacy CAN Devices
	Upper Bound on Processing Overhead
	No Limitations to the Bus Length
	Long-Term Impact of Overwriting Bits

	Limitations and Future Challenges
	Ethics Considerations
	Conclusion
	References
	Appendix
	Detailed Analysis of Selected Schemes
	LiBrA-CAN
	LinAuth
	LCAP
	CaCAN
	MAuth-CAN
	AuthentiCAN
	Watermarking
	CANTO
	ZBCAN
	CAN-MM
	LEAP
	CAN-TORO
	Other Approaches

	Security Proof

